Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029562711> ?p ?o ?g. }
- W3029562711 endingPage "97575" @default.
- W3029562711 startingPage "97564" @default.
- W3029562711 abstract "At present, the existing abnormal event detection models based on deep learning mainly focus on data represented by a vectorial form, which pay little attention to the impact of the internal structure characteristics of feature vector. In addition, a single classifier is difficult to ensure the accuracy of classification. In order to address the above issues, we propose an abnormal event detection hybrid modulation method via feature expectation subgraph calibrating classification in video surveillance scenes in this paper. Our main contribution is to calibrate the classification of a single classifier by constructing feature expectation subgraphs. First, we employ convolutional neural network and long short-term memory models to extract the spatiotemporal features of video frame, and then construct the feature expectation subgraph for each key frame of every video, which could be used to capture the internal sequential and topological relational characteristics of structured feature vector. Second, we project expectation subgraphs on the sparse vector to combine with a support vector classifier to calibrate the results of a linear support vector classifier. Finally, the experiments on a common dataset named UCSDped1 and a coal mining video dataset in comparison with some existing works demonstrate that the performance of the proposed method is better than several the state-of-the-art approaches." @default.
- W3029562711 created "2020-06-05" @default.
- W3029562711 creator A5045185482 @default.
- W3029562711 creator A5059744438 @default.
- W3029562711 creator A5068757943 @default.
- W3029562711 creator A5078523354 @default.
- W3029562711 creator A5085280616 @default.
- W3029562711 date "2020-01-01" @default.
- W3029562711 modified "2023-10-16" @default.
- W3029562711 title "Abnormal Event Detection via Feature Expectation Subgraph Calibrating Classification in Video Surveillance Scenes" @default.
- W3029562711 cites W1957718552 @default.
- W3029562711 cites W1963789929 @default.
- W3029562711 cites W2021659075 @default.
- W3029562711 cites W2045303404 @default.
- W3029562711 cites W2047016883 @default.
- W3029562711 cites W2051399867 @default.
- W3029562711 cites W2122361470 @default.
- W3029562711 cites W2122429065 @default.
- W3029562711 cites W2125105611 @default.
- W3029562711 cites W2151096523 @default.
- W3029562711 cites W2163612318 @default.
- W3029562711 cites W2256811964 @default.
- W3029562711 cites W2287101536 @default.
- W3029562711 cites W2300020177 @default.
- W3029562711 cites W2464754550 @default.
- W3029562711 cites W2519730330 @default.
- W3029562711 cites W2551491223 @default.
- W3029562711 cites W2571410400 @default.
- W3029562711 cites W2593239008 @default.
- W3029562711 cites W2609535044 @default.
- W3029562711 cites W2609970367 @default.
- W3029562711 cites W2611970278 @default.
- W3029562711 cites W2738328309 @default.
- W3029562711 cites W2754132772 @default.
- W3029562711 cites W2757473709 @default.
- W3029562711 cites W2759341202 @default.
- W3029562711 cites W2760857570 @default.
- W3029562711 cites W2763384612 @default.
- W3029562711 cites W2767933817 @default.
- W3029562711 cites W2791447643 @default.
- W3029562711 cites W2794050337 @default.
- W3029562711 cites W2804220257 @default.
- W3029562711 cites W2804483946 @default.
- W3029562711 cites W2808699053 @default.
- W3029562711 cites W2883286874 @default.
- W3029562711 cites W2887356857 @default.
- W3029562711 cites W2890018396 @default.
- W3029562711 cites W2898828531 @default.
- W3029562711 cites W2903380502 @default.
- W3029562711 cites W2914884512 @default.
- W3029562711 cites W2915683453 @default.
- W3029562711 cites W2954982847 @default.
- W3029562711 cites W2968184709 @default.
- W3029562711 cites W2972048586 @default.
- W3029562711 cites W2975517869 @default.
- W3029562711 cites W2977897871 @default.
- W3029562711 cites W2990861658 @default.
- W3029562711 cites W3000601344 @default.
- W3029562711 cites W3009745290 @default.
- W3029562711 cites W3101203783 @default.
- W3029562711 doi "https://doi.org/10.1109/access.2020.2997357" @default.
- W3029562711 hasPublicationYear "2020" @default.
- W3029562711 type Work @default.
- W3029562711 sameAs 3029562711 @default.
- W3029562711 citedByCount "9" @default.
- W3029562711 countsByYear W30295627112020 @default.
- W3029562711 countsByYear W30295627112021 @default.
- W3029562711 countsByYear W30295627112022 @default.
- W3029562711 countsByYear W30295627112023 @default.
- W3029562711 crossrefType "journal-article" @default.
- W3029562711 hasAuthorship W3029562711A5045185482 @default.
- W3029562711 hasAuthorship W3029562711A5059744438 @default.
- W3029562711 hasAuthorship W3029562711A5068757943 @default.
- W3029562711 hasAuthorship W3029562711A5078523354 @default.
- W3029562711 hasAuthorship W3029562711A5085280616 @default.
- W3029562711 hasBestOaLocation W30295627111 @default.
- W3029562711 hasConcept C12267149 @default.
- W3029562711 hasConcept C124101348 @default.
- W3029562711 hasConcept C139532973 @default.
- W3029562711 hasConcept C153180895 @default.
- W3029562711 hasConcept C154945302 @default.
- W3029562711 hasConcept C199360897 @default.
- W3029562711 hasConcept C2780801425 @default.
- W3029562711 hasConcept C41008148 @default.
- W3029562711 hasConcept C52622490 @default.
- W3029562711 hasConcept C81363708 @default.
- W3029562711 hasConcept C83665646 @default.
- W3029562711 hasConcept C95623464 @default.
- W3029562711 hasConceptScore W3029562711C12267149 @default.
- W3029562711 hasConceptScore W3029562711C124101348 @default.
- W3029562711 hasConceptScore W3029562711C139532973 @default.
- W3029562711 hasConceptScore W3029562711C153180895 @default.
- W3029562711 hasConceptScore W3029562711C154945302 @default.
- W3029562711 hasConceptScore W3029562711C199360897 @default.
- W3029562711 hasConceptScore W3029562711C2780801425 @default.
- W3029562711 hasConceptScore W3029562711C41008148 @default.
- W3029562711 hasConceptScore W3029562711C52622490 @default.
- W3029562711 hasConceptScore W3029562711C81363708 @default.