Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029563868> ?p ?o ?g. }
- W3029563868 endingPage "1027" @default.
- W3029563868 startingPage "1023" @default.
- W3029563868 abstract "Background Intracranial aneurysms (IAs) are common in the population and may cause death. Objective To develop a new fully automated detection and segmentation deep neural network based framework to assist neurologists in evaluating and contouring intracranial aneurysms from 2D+time digital subtraction angiography (DSA) sequences during diagnosis. Methods The network structure is based on a general U-shaped design for medical image segmentation and detection. The network includes a fully convolutional technique to detect aneurysms in high-resolution DSA frames. In addition, a bidirectional convolutional long short-term memory module is introduced at each level of the network to capture the change in contrast medium flow across the 2D DSA frames. The resulting network incorporates both spatial and temporal information from DSA sequences and can be trained end-to-end. Furthermore, deep supervision was implemented to help the network converge. The proposed network structure was trained with 2269 DSA sequences from 347 patients with IAs. After that, the system was evaluated on a blind test set with 947 DSA sequences from 146 patients. Results Of the 354 aneurysms, 316 (89.3%) were successfully detected, corresponding to a patient level sensitivity of 97.7% at an average false positive number of 3.77 per sequence. The system runs for less than one second per sequence with an average dice coefficient score of 0.533. Conclusions This deep neural network assists in successfully detecting and segmenting aneurysms from 2D DSA sequences, and can be used in clinical practice." @default.
- W3029563868 created "2020-06-05" @default.
- W3029563868 creator A5004010086 @default.
- W3029563868 creator A5006022200 @default.
- W3029563868 creator A5006519424 @default.
- W3029563868 creator A5011627728 @default.
- W3029563868 creator A5017749211 @default.
- W3029563868 creator A5029182044 @default.
- W3029563868 creator A5035281991 @default.
- W3029563868 creator A5037084666 @default.
- W3029563868 creator A5049415533 @default.
- W3029563868 creator A5052528706 @default.
- W3029563868 creator A5067379327 @default.
- W3029563868 creator A5084458604 @default.
- W3029563868 creator A5084491692 @default.
- W3029563868 date "2020-05-29" @default.
- W3029563868 modified "2023-10-15" @default.
- W3029563868 title "Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network" @default.
- W3029563868 cites W1901129140 @default.
- W3029563868 cites W1915219863 @default.
- W3029563868 cites W1997499435 @default.
- W3029563868 cites W2113713760 @default.
- W3029563868 cites W2129909817 @default.
- W3029563868 cites W2341116024 @default.
- W3029563868 cites W2395611524 @default.
- W3029563868 cites W2463818697 @default.
- W3029563868 cites W2610147486 @default.
- W3029563868 cites W2763794872 @default.
- W3029563868 cites W2766766852 @default.
- W3029563868 cites W2791155853 @default.
- W3029563868 cites W2795136709 @default.
- W3029563868 cites W2884561390 @default.
- W3029563868 cites W2891451067 @default.
- W3029563868 cites W2895926594 @default.
- W3029563868 cites W2904807675 @default.
- W3029563868 cites W2917055433 @default.
- W3029563868 cites W2921137552 @default.
- W3029563868 cites W2963794428 @default.
- W3029563868 cites W2966272446 @default.
- W3029563868 cites W2985464506 @default.
- W3029563868 cites W2986375494 @default.
- W3029563868 cites W2991676991 @default.
- W3029563868 cites W4238100585 @default.
- W3029563868 doi "https://doi.org/10.1136/neurintsurg-2020-015824" @default.
- W3029563868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32471827" @default.
- W3029563868 hasPublicationYear "2020" @default.
- W3029563868 type Work @default.
- W3029563868 sameAs 3029563868 @default.
- W3029563868 citedByCount "31" @default.
- W3029563868 countsByYear W30295638682020 @default.
- W3029563868 countsByYear W30295638682021 @default.
- W3029563868 countsByYear W30295638682022 @default.
- W3029563868 countsByYear W30295638682023 @default.
- W3029563868 crossrefType "journal-article" @default.
- W3029563868 hasAuthorship W3029563868A5004010086 @default.
- W3029563868 hasAuthorship W3029563868A5006022200 @default.
- W3029563868 hasAuthorship W3029563868A5006519424 @default.
- W3029563868 hasAuthorship W3029563868A5011627728 @default.
- W3029563868 hasAuthorship W3029563868A5017749211 @default.
- W3029563868 hasAuthorship W3029563868A5029182044 @default.
- W3029563868 hasAuthorship W3029563868A5035281991 @default.
- W3029563868 hasAuthorship W3029563868A5037084666 @default.
- W3029563868 hasAuthorship W3029563868A5049415533 @default.
- W3029563868 hasAuthorship W3029563868A5052528706 @default.
- W3029563868 hasAuthorship W3029563868A5067379327 @default.
- W3029563868 hasAuthorship W3029563868A5084458604 @default.
- W3029563868 hasAuthorship W3029563868A5084491692 @default.
- W3029563868 hasConcept C108583219 @default.
- W3029563868 hasConcept C124504099 @default.
- W3029563868 hasConcept C126838900 @default.
- W3029563868 hasConcept C153180895 @default.
- W3029563868 hasConcept C154945302 @default.
- W3029563868 hasConcept C163892561 @default.
- W3029563868 hasConcept C2778286760 @default.
- W3029563868 hasConcept C2780643987 @default.
- W3029563868 hasConcept C2908647359 @default.
- W3029563868 hasConcept C31972630 @default.
- W3029563868 hasConcept C41008148 @default.
- W3029563868 hasConcept C50644808 @default.
- W3029563868 hasConcept C71924100 @default.
- W3029563868 hasConcept C74296488 @default.
- W3029563868 hasConcept C81363708 @default.
- W3029563868 hasConcept C89600930 @default.
- W3029563868 hasConcept C99454951 @default.
- W3029563868 hasConceptScore W3029563868C108583219 @default.
- W3029563868 hasConceptScore W3029563868C124504099 @default.
- W3029563868 hasConceptScore W3029563868C126838900 @default.
- W3029563868 hasConceptScore W3029563868C153180895 @default.
- W3029563868 hasConceptScore W3029563868C154945302 @default.
- W3029563868 hasConceptScore W3029563868C163892561 @default.
- W3029563868 hasConceptScore W3029563868C2778286760 @default.
- W3029563868 hasConceptScore W3029563868C2780643987 @default.
- W3029563868 hasConceptScore W3029563868C2908647359 @default.
- W3029563868 hasConceptScore W3029563868C31972630 @default.
- W3029563868 hasConceptScore W3029563868C41008148 @default.
- W3029563868 hasConceptScore W3029563868C50644808 @default.
- W3029563868 hasConceptScore W3029563868C71924100 @default.
- W3029563868 hasConceptScore W3029563868C74296488 @default.