Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029584908> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3029584908 endingPage "204" @default.
- W3029584908 startingPage "193" @default.
- W3029584908 abstract "With plethora of data points available at organization’s disposal, it becomes difficult to understand how to decipher trends hidden within these data points. Every sequence of data tends to follow a certain trend. This data can be revenue numbers, conversions, purchases, logins, anything, and everything. As a marketer if we are able to identify this pattern, it can help us accomplish a lot. If we can find out these trends, we shall be able to predict, with a certain degree of accuracy, about what is going to happen in future, for example, what is going to be the revenue that we shall earn in next three months, what would be the sales in next one year, so on and so forth. The question at this point is how exactly we can find these trends hidden in plain sight. This is where mathematics in conjunction with machine learning comes to the rescue. This paper answers two key questions: (1) How to identify the patterns of your observations? (2) How to utilize this pattern to predict for future? As a prerequisite we would require observations that are collected over equal intervals of time for some specific dimension/category like monthly prices of a specific commodity, weekly revenue earned, and monthly sales by volume, etc. In this paper, we have talked about the importance of machine learning in forecasting using time series and validated it by numerical illustration." @default.
- W3029584908 created "2020-06-05" @default.
- W3029584908 creator A5032176679 @default.
- W3029584908 creator A5064781017 @default.
- W3029584908 creator A5084740285 @default.
- W3029584908 date "2020-01-01" @default.
- W3029584908 modified "2023-09-26" @default.
- W3029584908 title "Time Series Analysis: A Machine Learning Approach" @default.
- W3029584908 cites W2040395995 @default.
- W3029584908 cites W2081627995 @default.
- W3029584908 cites W2236545095 @default.
- W3029584908 cites W2322113870 @default.
- W3029584908 cites W2794778778 @default.
- W3029584908 cites W2900296094 @default.
- W3029584908 cites W4211076087 @default.
- W3029584908 doi "https://doi.org/10.1007/978-981-15-3643-4_14" @default.
- W3029584908 hasPublicationYear "2020" @default.
- W3029584908 type Work @default.
- W3029584908 sameAs 3029584908 @default.
- W3029584908 citedByCount "0" @default.
- W3029584908 crossrefType "book-chapter" @default.
- W3029584908 hasAuthorship W3029584908A5032176679 @default.
- W3029584908 hasAuthorship W3029584908A5064781017 @default.
- W3029584908 hasAuthorship W3029584908A5084740285 @default.
- W3029584908 hasConcept C10138342 @default.
- W3029584908 hasConcept C119857082 @default.
- W3029584908 hasConcept C127413603 @default.
- W3029584908 hasConcept C143724316 @default.
- W3029584908 hasConcept C151406439 @default.
- W3029584908 hasConcept C151730666 @default.
- W3029584908 hasConcept C154945302 @default.
- W3029584908 hasConcept C162324750 @default.
- W3029584908 hasConcept C195487862 @default.
- W3029584908 hasConcept C202444582 @default.
- W3029584908 hasConcept C2522767166 @default.
- W3029584908 hasConcept C2524010 @default.
- W3029584908 hasConcept C26517878 @default.
- W3029584908 hasConcept C2778112365 @default.
- W3029584908 hasConcept C2779439359 @default.
- W3029584908 hasConcept C28719098 @default.
- W3029584908 hasConcept C33676613 @default.
- W3029584908 hasConcept C33923547 @default.
- W3029584908 hasConcept C38652104 @default.
- W3029584908 hasConcept C41008148 @default.
- W3029584908 hasConcept C42475967 @default.
- W3029584908 hasConcept C54355233 @default.
- W3029584908 hasConcept C86803240 @default.
- W3029584908 hasConceptScore W3029584908C10138342 @default.
- W3029584908 hasConceptScore W3029584908C119857082 @default.
- W3029584908 hasConceptScore W3029584908C127413603 @default.
- W3029584908 hasConceptScore W3029584908C143724316 @default.
- W3029584908 hasConceptScore W3029584908C151406439 @default.
- W3029584908 hasConceptScore W3029584908C151730666 @default.
- W3029584908 hasConceptScore W3029584908C154945302 @default.
- W3029584908 hasConceptScore W3029584908C162324750 @default.
- W3029584908 hasConceptScore W3029584908C195487862 @default.
- W3029584908 hasConceptScore W3029584908C202444582 @default.
- W3029584908 hasConceptScore W3029584908C2522767166 @default.
- W3029584908 hasConceptScore W3029584908C2524010 @default.
- W3029584908 hasConceptScore W3029584908C26517878 @default.
- W3029584908 hasConceptScore W3029584908C2778112365 @default.
- W3029584908 hasConceptScore W3029584908C2779439359 @default.
- W3029584908 hasConceptScore W3029584908C28719098 @default.
- W3029584908 hasConceptScore W3029584908C33676613 @default.
- W3029584908 hasConceptScore W3029584908C33923547 @default.
- W3029584908 hasConceptScore W3029584908C38652104 @default.
- W3029584908 hasConceptScore W3029584908C41008148 @default.
- W3029584908 hasConceptScore W3029584908C42475967 @default.
- W3029584908 hasConceptScore W3029584908C54355233 @default.
- W3029584908 hasConceptScore W3029584908C86803240 @default.
- W3029584908 hasLocation W30295849081 @default.
- W3029584908 hasOpenAccess W3029584908 @default.
- W3029584908 hasPrimaryLocation W30295849081 @default.
- W3029584908 hasRelatedWork W1966425161 @default.
- W3029584908 hasRelatedWork W2148160376 @default.
- W3029584908 hasRelatedWork W2790115721 @default.
- W3029584908 hasRelatedWork W2800296055 @default.
- W3029584908 hasRelatedWork W2963574268 @default.
- W3029584908 hasRelatedWork W2970140314 @default.
- W3029584908 hasRelatedWork W3093464162 @default.
- W3029584908 hasRelatedWork W3125272013 @default.
- W3029584908 hasRelatedWork W4213225422 @default.
- W3029584908 hasRelatedWork W4309045103 @default.
- W3029584908 isParatext "false" @default.
- W3029584908 isRetracted "false" @default.
- W3029584908 magId "3029584908" @default.
- W3029584908 workType "book-chapter" @default.