Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029860990> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3029860990 abstract "12002 Background: Most patients with cancer die without a documented serious illness conversation (SIC) about prognosis and goals. Interventions that increase SICs between oncology clinicians and patients may improve goal-concordant care and end-of-life outcomes. Methods: In this stepped-wedge cluster randomized trial (NCT03984773), we tested the effect of an intervention delivering machine learning-based mortality estimates with behavioral nudges to oncologists to increase SICs among patients with cancer. The clinician-focused intervention consisted of 1) weekly emails providing individual SIC performance feedback (number of SICs in the past month) and peer comparisons; 2) a list of patients scheduled for the next week with a ≥10% predicted risk of 6 month mortality by a validated machine learning prognostic algorithm, and 3) automated opt-out text prompts on the patient’s appointment day to consider an SIC. Eight medical oncology clinics were randomized to receive the intervention in a stepped-wedge fashion every four weeks for a total of 16 weeks. Medical oncology clinicians were included if they were trained to use the SIC Guide (Ariadne Labs, Boston MA). Patients were included if they had an outpatient encounter with an eligible clinician between June 17 and November 1, 2019. The primary outcome was the percent of patient encounters with a documented SIC. Intention to treat analyses adjusted for clinic and wedge fixed effects and clustered at the oncologist level. Results: The sample consisted of 78 clinicians and 14,607 patients. The mean age of patients was 61.7 years, 55.7% were female, 70.4% were white, and 19.6% were black. The percent of patient encounters with an SIC was 1.2% (106/8536) during the pre-intervention period and 4.0% (401/10,152) during the intervention period. In intention to treat adjusted analyses, the intervention led to a significant increase in SICs (adjusted odds ratio, 3.7; 95% CI, 2.5 to 5.4, P value < 0.0001). Conclusions: An intervention consisting of machine learning mortality estimates and behavioral nudges to oncology clinicians increased SICs by three-fold over 16 weeks, a significant difference.This is one of the first studies evaluating a machine learning-based behavioral intervention to improve serious illness communication in oncology. Secondary analyses (completed April 2020) will clarify whether this intervention leads to a sustained increase in SIC rates and improves goal-concordant care and end-of-life outcomes. Clinical trial information: NCT03984773 ." @default.
- W3029860990 created "2020-06-05" @default.
- W3029860990 creator A5001295833 @default.
- W3029860990 creator A5012671311 @default.
- W3029860990 creator A5018143904 @default.
- W3029860990 creator A5020540872 @default.
- W3029860990 creator A5020661057 @default.
- W3029860990 creator A5027620308 @default.
- W3029860990 creator A5031769250 @default.
- W3029860990 creator A5043470257 @default.
- W3029860990 creator A5044960441 @default.
- W3029860990 creator A5071319515 @default.
- W3029860990 creator A5080920855 @default.
- W3029860990 creator A5090252563 @default.
- W3029860990 creator A5091460718 @default.
- W3029860990 date "2020-05-20" @default.
- W3029860990 modified "2023-09-23" @default.
- W3029860990 title "Effect of integrating machine learning mortality estimates with behavioral nudges to increase serious illness conversions among patients with cancer: A stepped-wedge cluster randomized trial." @default.
- W3029860990 doi "https://doi.org/10.1200/jco.2020.38.15_suppl.12002" @default.
- W3029860990 hasPublicationYear "2020" @default.
- W3029860990 type Work @default.
- W3029860990 sameAs 3029860990 @default.
- W3029860990 citedByCount "5" @default.
- W3029860990 countsByYear W30298609902020 @default.
- W3029860990 countsByYear W30298609902021 @default.
- W3029860990 countsByYear W30298609902022 @default.
- W3029860990 crossrefType "journal-article" @default.
- W3029860990 hasAuthorship W3029860990A5001295833 @default.
- W3029860990 hasAuthorship W3029860990A5012671311 @default.
- W3029860990 hasAuthorship W3029860990A5018143904 @default.
- W3029860990 hasAuthorship W3029860990A5020540872 @default.
- W3029860990 hasAuthorship W3029860990A5020661057 @default.
- W3029860990 hasAuthorship W3029860990A5027620308 @default.
- W3029860990 hasAuthorship W3029860990A5031769250 @default.
- W3029860990 hasAuthorship W3029860990A5043470257 @default.
- W3029860990 hasAuthorship W3029860990A5044960441 @default.
- W3029860990 hasAuthorship W3029860990A5071319515 @default.
- W3029860990 hasAuthorship W3029860990A5080920855 @default.
- W3029860990 hasAuthorship W3029860990A5090252563 @default.
- W3029860990 hasAuthorship W3029860990A5091460718 @default.
- W3029860990 hasConcept C126322002 @default.
- W3029860990 hasConcept C159110408 @default.
- W3029860990 hasConcept C168563851 @default.
- W3029860990 hasConcept C1862650 @default.
- W3029860990 hasConcept C194828623 @default.
- W3029860990 hasConcept C27415008 @default.
- W3029860990 hasConcept C2780665704 @default.
- W3029860990 hasConcept C71924100 @default.
- W3029860990 hasConceptScore W3029860990C126322002 @default.
- W3029860990 hasConceptScore W3029860990C159110408 @default.
- W3029860990 hasConceptScore W3029860990C168563851 @default.
- W3029860990 hasConceptScore W3029860990C1862650 @default.
- W3029860990 hasConceptScore W3029860990C194828623 @default.
- W3029860990 hasConceptScore W3029860990C27415008 @default.
- W3029860990 hasConceptScore W3029860990C2780665704 @default.
- W3029860990 hasConceptScore W3029860990C71924100 @default.
- W3029860990 hasLocation W30298609901 @default.
- W3029860990 hasOpenAccess W3029860990 @default.
- W3029860990 hasPrimaryLocation W30298609901 @default.
- W3029860990 hasRelatedWork W11874277 @default.
- W3029860990 hasRelatedWork W12660874 @default.
- W3029860990 hasRelatedWork W17195860 @default.
- W3029860990 hasRelatedWork W17731501 @default.
- W3029860990 hasRelatedWork W18308467 @default.
- W3029860990 hasRelatedWork W18875666 @default.
- W3029860990 hasRelatedWork W20741237 @default.
- W3029860990 hasRelatedWork W3320369 @default.
- W3029860990 hasRelatedWork W4717234 @default.
- W3029860990 hasRelatedWork W19156370 @default.
- W3029860990 isParatext "false" @default.
- W3029860990 isRetracted "false" @default.
- W3029860990 magId "3029860990" @default.
- W3029860990 workType "article" @default.