Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029869524> ?p ?o ?g. }
- W3029869524 endingPage "105566" @default.
- W3029869524 startingPage "105566" @default.
- W3029869524 abstract "Background and objectives: Aged people usually are more to be diagnosed with retinal diseases in developed countries. Retinal capillaries leakage into the retina swells and causes an acute vision loss, which is called age-related macular degeneration (AMD). The disease can not be adequately diagnosed solely using fundus images as depth information is not available. The variations in retina volume assist in monitoring ophthalmological abnormalities. Therefore, high-fidelity AMD segmentation in optical coherence tomography (OCT) imaging modality has raised the attention of researchers as well as those of the medical doctors. Many methods across the years encompassing machine learning approaches and convolutional neural networks (CNN) strategies have been proposed for object detection and image segmentation. Methods: In this paper, we analyze four wide-spread deep learning models designed for the segmentation of three retinal fluids outputting dense predictions in the RETOUCH challenge data. We aim to demonstrate how a patch-based approach could push the performance for each method. Besides, we also evaluate the methods using the OPTIMA challenge dataset for generalizing network performance. The analysis is driven into two sections: the comparison between the four approaches and the significance of patching the images. Results: The performance of networks trained on the RETOUCH dataset is higher than human performance. The analysis further generalized the performance of the best network obtained by fine-tuning it and achieved a mean Dice similarity coefficient (DSC) of 0.85. Out of the three types of fluids, intraretinal fluid (IRF) is more recognized, and the highest DSC value of 0.922 is achieved using Spectralis dataset. Additionally, the highest average DSC score is 0.84, which is achieved by PaDeeplabv3+ model using Cirrus dataset. Conclusions: The proposed method segments the three fluids in the retina with high DSC value. Fine-tuning the networks trained on the RETOUCH dataset makes the network perform better and faster than training from scratch. Enriching the networks with inputting a variety of shapes by extracting patches helped to segment the fluids better than using a full image." @default.
- W3029869524 created "2020-06-05" @default.
- W3029869524 creator A5018883645 @default.
- W3029869524 creator A5022228619 @default.
- W3029869524 creator A5034034713 @default.
- W3029869524 creator A5034413668 @default.
- W3029869524 creator A5079375904 @default.
- W3029869524 date "2020-10-01" @default.
- W3029869524 modified "2023-09-28" @default.
- W3029869524 title "Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans" @default.
- W3029869524 cites W1979102712 @default.
- W3029869524 cites W2009195969 @default.
- W3029869524 cites W2042321005 @default.
- W3029869524 cites W2056370875 @default.
- W3029869524 cites W2117539524 @default.
- W3029869524 cites W2148347694 @default.
- W3029869524 cites W2167297338 @default.
- W3029869524 cites W2480705741 @default.
- W3029869524 cites W2549799826 @default.
- W3029869524 cites W2592517646 @default.
- W3029869524 cites W2606534623 @default.
- W3029869524 cites W2621748147 @default.
- W3029869524 cites W2753708825 @default.
- W3029869524 cites W2772059204 @default.
- W3029869524 cites W2792141483 @default.
- W3029869524 cites W2792836735 @default.
- W3029869524 cites W2883235649 @default.
- W3029869524 cites W2886281300 @default.
- W3029869524 cites W2919070891 @default.
- W3029869524 cites W2949122205 @default.
- W3029869524 cites W2963881378 @default.
- W3029869524 cites W2964065611 @default.
- W3029869524 cites W2964309882 @default.
- W3029869524 doi "https://doi.org/10.1016/j.cmpb.2020.105566" @default.
- W3029869524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32504911" @default.
- W3029869524 hasPublicationYear "2020" @default.
- W3029869524 type Work @default.
- W3029869524 sameAs 3029869524 @default.
- W3029869524 citedByCount "23" @default.
- W3029869524 countsByYear W30298695242020 @default.
- W3029869524 countsByYear W30298695242021 @default.
- W3029869524 countsByYear W30298695242022 @default.
- W3029869524 countsByYear W30298695242023 @default.
- W3029869524 crossrefType "journal-article" @default.
- W3029869524 hasAuthorship W3029869524A5018883645 @default.
- W3029869524 hasAuthorship W3029869524A5022228619 @default.
- W3029869524 hasAuthorship W3029869524A5034034713 @default.
- W3029869524 hasAuthorship W3029869524A5034413668 @default.
- W3029869524 hasAuthorship W3029869524A5079375904 @default.
- W3029869524 hasBestOaLocation W30298695241 @default.
- W3029869524 hasConcept C108583219 @default.
- W3029869524 hasConcept C118487528 @default.
- W3029869524 hasConcept C124504099 @default.
- W3029869524 hasConcept C153180895 @default.
- W3029869524 hasConcept C154945302 @default.
- W3029869524 hasConcept C163892561 @default.
- W3029869524 hasConcept C2776391266 @default.
- W3029869524 hasConcept C2776403814 @default.
- W3029869524 hasConcept C2778527774 @default.
- W3029869524 hasConcept C2778818243 @default.
- W3029869524 hasConcept C31972630 @default.
- W3029869524 hasConcept C41008148 @default.
- W3029869524 hasConcept C71924100 @default.
- W3029869524 hasConcept C81363708 @default.
- W3029869524 hasConcept C89600930 @default.
- W3029869524 hasConceptScore W3029869524C108583219 @default.
- W3029869524 hasConceptScore W3029869524C118487528 @default.
- W3029869524 hasConceptScore W3029869524C124504099 @default.
- W3029869524 hasConceptScore W3029869524C153180895 @default.
- W3029869524 hasConceptScore W3029869524C154945302 @default.
- W3029869524 hasConceptScore W3029869524C163892561 @default.
- W3029869524 hasConceptScore W3029869524C2776391266 @default.
- W3029869524 hasConceptScore W3029869524C2776403814 @default.
- W3029869524 hasConceptScore W3029869524C2778527774 @default.
- W3029869524 hasConceptScore W3029869524C2778818243 @default.
- W3029869524 hasConceptScore W3029869524C31972630 @default.
- W3029869524 hasConceptScore W3029869524C41008148 @default.
- W3029869524 hasConceptScore W3029869524C71924100 @default.
- W3029869524 hasConceptScore W3029869524C81363708 @default.
- W3029869524 hasConceptScore W3029869524C89600930 @default.
- W3029869524 hasFunder F4320329006 @default.
- W3029869524 hasLocation W30298695241 @default.
- W3029869524 hasLocation W30298695242 @default.
- W3029869524 hasLocation W30298695243 @default.
- W3029869524 hasOpenAccess W3029869524 @default.
- W3029869524 hasPrimaryLocation W30298695241 @default.
- W3029869524 hasRelatedWork W2731899572 @default.
- W3029869524 hasRelatedWork W2969790209 @default.
- W3029869524 hasRelatedWork W3089025284 @default.
- W3029869524 hasRelatedWork W3133861977 @default.
- W3029869524 hasRelatedWork W4200528772 @default.
- W3029869524 hasRelatedWork W4285827401 @default.
- W3029869524 hasRelatedWork W4310880831 @default.
- W3029869524 hasRelatedWork W4312417841 @default.
- W3029869524 hasRelatedWork W4321369474 @default.
- W3029869524 hasRelatedWork W4360850309 @default.
- W3029869524 hasVolume "195" @default.
- W3029869524 isParatext "false" @default.