Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030156391> ?p ?o ?g. }
- W3030156391 endingPage "849" @default.
- W3030156391 startingPage "838" @default.
- W3030156391 abstract "Leveraging consumer technology such as smartphone and smartwatch devices to objectively assess people with multiple sclerosis (PwMS) remotely could capture unique aspects of disease progression. This study explores the feasibility of assessing PwMS and Healthy Control's (HC) physical function by characterising gaitrelated features, which can be modelled using machine learning (ML) techniques to correctly distinguish subgroups of PwMS from healthy controls. A total of 97 subjects (24 HC subjects, 52 mildly disabled (PwMSmild, EDSS [0-3]) and 21 moderately disabled (PwMSmod, EDSS [3.5- 5.5]) contributed data which was recorded from a TwoMinute Walk Test (2MWT) performed out-of-clinic and daily over a 24-week period. Signal-based features relating to movement were extracted from sensors in smartphone and smartwatch devices. A large number of features (n = 156) showed fair-to-strong (R > 0.3) correlations with clinical outcomes. LASSO feature selection was applied to select and rank subsets of features used for dichotomous classification between subject groups, which were compared using Logistic Regression (LR), Support Vector Machines (SVM) and Random Forest (RF) models. Classifications of subject types were compared using data obtained from smartphone, smartwatch and the fusion of features from both devices. Models built on smartphone features alone achieved the highest classification performance, indicating that accurate and remote measurement of the ambulatory characteristics of HC and PwMS can be achieved with only one device. It was observed however that smartphonebased performance was affected by inconsistent placement location (running belt versus pocket). Results show that PwMSmod could be distinguished from HC subjects (Acc. 82.2 ± 2.9%, Sen. 80.1 ± 3.9%, Spec. 87.2 ± 4.2%, F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> 84.3 ± 3.8), and PwMSmild (Acc. 82.3 ± 1.9%, Sen. 71.6 ± 4.2%, Spec. 87.0 ± 3.2%, F1 75.1 ± 2.2) using an SVM classifier with a Radial Basis Function (RBF). PwMSmild were shown to exhibit HC-like behaviour and were thus less distinguishable from HC (Acc. 66.4 ± 4.5%, Sen. 67.5 ± 5.7%, Spec. 60.3 ± 6.7%, F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> 58.6 ± 5.8). Finally, it was observed that subjects in this study demonstrated low intraand high inter-subject variability which was representative of subject-specific gait characteristics." @default.
- W3030156391 created "2020-06-05" @default.
- W3030156391 creator A5004025365 @default.
- W3030156391 creator A5004120907 @default.
- W3030156391 creator A5009707434 @default.
- W3030156391 creator A5022466380 @default.
- W3030156391 creator A5035943996 @default.
- W3030156391 creator A5059154891 @default.
- W3030156391 creator A5064593698 @default.
- W3030156391 creator A5078228146 @default.
- W3030156391 creator A5079598890 @default.
- W3030156391 creator A5079875656 @default.
- W3030156391 creator A5089819897 @default.
- W3030156391 date "2021-03-01" @default.
- W3030156391 modified "2023-10-10" @default.
- W3030156391 title "Smartphone- and Smartwatch-Based Remote Characterisation of Ambulation in Multiple Sclerosis During the Two-Minute Walk Test" @default.
- W3030156391 cites W1890698066 @default.
- W3030156391 cites W1952647236 @default.
- W3030156391 cites W1969422637 @default.
- W3030156391 cites W1972143904 @default.
- W3030156391 cites W1980721081 @default.
- W3030156391 cites W1996215710 @default.
- W3030156391 cites W1999957848 @default.
- W3030156391 cites W2001818617 @default.
- W3030156391 cites W2003135851 @default.
- W3030156391 cites W2006974369 @default.
- W3030156391 cites W2007221293 @default.
- W3030156391 cites W2015494671 @default.
- W3030156391 cites W2021470828 @default.
- W3030156391 cites W2022850051 @default.
- W3030156391 cites W2055312081 @default.
- W3030156391 cites W2063406928 @default.
- W3030156391 cites W2095666175 @default.
- W3030156391 cites W2110065044 @default.
- W3030156391 cites W2110585947 @default.
- W3030156391 cites W2112165124 @default.
- W3030156391 cites W2112374874 @default.
- W3030156391 cites W2118978333 @default.
- W3030156391 cites W2119408292 @default.
- W3030156391 cites W2133849899 @default.
- W3030156391 cites W2145481931 @default.
- W3030156391 cites W2161634194 @default.
- W3030156391 cites W2164184994 @default.
- W3030156391 cites W2191952236 @default.
- W3030156391 cites W2321149532 @default.
- W3030156391 cites W2328336187 @default.
- W3030156391 cites W2404519457 @default.
- W3030156391 cites W2409587536 @default.
- W3030156391 cites W2566036777 @default.
- W3030156391 cites W2588488142 @default.
- W3030156391 cites W2595557058 @default.
- W3030156391 cites W2596627175 @default.
- W3030156391 cites W2735068279 @default.
- W3030156391 cites W2736231139 @default.
- W3030156391 cites W2755715597 @default.
- W3030156391 cites W2789525912 @default.
- W3030156391 cites W2911964244 @default.
- W3030156391 cites W2945555875 @default.
- W3030156391 cites W2970657297 @default.
- W3030156391 cites W2980175514 @default.
- W3030156391 cites W3014262855 @default.
- W3030156391 cites W3103221895 @default.
- W3030156391 cites W3105728206 @default.
- W3030156391 cites W4213009331 @default.
- W3030156391 doi "https://doi.org/10.1109/jbhi.2020.2998187" @default.
- W3030156391 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32750915" @default.
- W3030156391 hasPublicationYear "2021" @default.
- W3030156391 type Work @default.
- W3030156391 sameAs 3030156391 @default.
- W3030156391 citedByCount "25" @default.
- W3030156391 countsByYear W30301563912021 @default.
- W3030156391 countsByYear W30301563912022 @default.
- W3030156391 countsByYear W30301563912023 @default.
- W3030156391 crossrefType "journal-article" @default.
- W3030156391 hasAuthorship W3030156391A5004025365 @default.
- W3030156391 hasAuthorship W3030156391A5004120907 @default.
- W3030156391 hasAuthorship W3030156391A5009707434 @default.
- W3030156391 hasAuthorship W3030156391A5022466380 @default.
- W3030156391 hasAuthorship W3030156391A5035943996 @default.
- W3030156391 hasAuthorship W3030156391A5059154891 @default.
- W3030156391 hasAuthorship W3030156391A5064593698 @default.
- W3030156391 hasAuthorship W3030156391A5078228146 @default.
- W3030156391 hasAuthorship W3030156391A5079598890 @default.
- W3030156391 hasAuthorship W3030156391A5079875656 @default.
- W3030156391 hasAuthorship W3030156391A5089819897 @default.
- W3030156391 hasBestOaLocation W30301563911 @default.
- W3030156391 hasConcept C119857082 @default.
- W3030156391 hasConcept C12267149 @default.
- W3030156391 hasConcept C126322002 @default.
- W3030156391 hasConcept C136764020 @default.
- W3030156391 hasConcept C148483581 @default.
- W3030156391 hasConcept C149635348 @default.
- W3030156391 hasConcept C150594956 @default.
- W3030156391 hasConcept C151956035 @default.
- W3030156391 hasConcept C154945302 @default.
- W3030156391 hasConcept C169258074 @default.
- W3030156391 hasConcept C29794715 @default.
- W3030156391 hasConcept C35785553 @default.