Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030187663> ?p ?o ?g. }
- W3030187663 endingPage "013013" @default.
- W3030187663 startingPage "013013" @default.
- W3030187663 abstract "Abstract Very often when studying non-equilibrium systems one is interested in analysing dynamical behaviour that occurs with very low probability, so called rare events . In practice, since rare events are by definition atypical, they are often difficult to access in a statistically significant way. What are required are strategies to ‘make rare events typical’ so that they can be generated on demand. Here we present such a general approach to adaptively construct a dynamics that efficiently samples atypical events. We do so by exploiting the methods of reinforcement learning (RL), which refers to the set of machine learning techniques aimed at finding the optimal behaviour to maximise a reward associated with the dynamics. We consider the general perspective of dynamical trajectory ensembles, whereby rare events are described in terms of ensemble reweighting. By minimising the distance between a reweighted ensemble and that of a suitably parametrised controlled dynamics we arrive at a set of methods similar to those of RL to numerically approximate the optimal dynamics that realises the rare behaviour of interest. As simple illustrations we consider in detail the problem of excursions of a random walker, for the case of rare events with a finite time horizon; and the problem of a studying current statistics of a particle hopping in a ring geometry, for the case of an infinite time horizon. We discuss natural extensions of the ideas presented here, including to continuous-time Markov systems, first passage time problems and non-Markovian dynamics." @default.
- W3030187663 created "2020-06-05" @default.
- W3030187663 creator A5030672410 @default.
- W3030187663 creator A5034908857 @default.
- W3030187663 creator A5086280406 @default.
- W3030187663 date "2021-01-01" @default.
- W3030187663 modified "2023-10-16" @default.
- W3030187663 title "A reinforcement learning approach to rare trajectory sampling" @default.
- W3030187663 cites W1549353711 @default.
- W3030187663 cites W1554366315 @default.
- W3030187663 cites W1682403713 @default.
- W3030187663 cites W1706571876 @default.
- W3030187663 cites W1752690783 @default.
- W3030187663 cites W1864360008 @default.
- W3030187663 cites W1972633005 @default.
- W3030187663 cites W1975974871 @default.
- W3030187663 cites W1983016559 @default.
- W3030187663 cites W1983523797 @default.
- W3030187663 cites W1985969199 @default.
- W3030187663 cites W2013406658 @default.
- W3030187663 cites W2018705366 @default.
- W3030187663 cites W2020539709 @default.
- W3030187663 cites W2036963181 @default.
- W3030187663 cites W2037393162 @default.
- W3030187663 cites W2040582556 @default.
- W3030187663 cites W2046629897 @default.
- W3030187663 cites W2048017839 @default.
- W3030187663 cites W2050884147 @default.
- W3030187663 cites W2093524643 @default.
- W3030187663 cites W2094387729 @default.
- W3030187663 cites W2099490136 @default.
- W3030187663 cites W2107662876 @default.
- W3030187663 cites W2108541535 @default.
- W3030187663 cites W2113501460 @default.
- W3030187663 cites W2119717200 @default.
- W3030187663 cites W2132061057 @default.
- W3030187663 cites W2139914196 @default.
- W3030187663 cites W2141559645 @default.
- W3030187663 cites W2145339207 @default.
- W3030187663 cites W2158126207 @default.
- W3030187663 cites W2165131254 @default.
- W3030187663 cites W2173945562 @default.
- W3030187663 cites W2265344702 @default.
- W3030187663 cites W2273902309 @default.
- W3030187663 cites W2559048909 @default.
- W3030187663 cites W2560647685 @default.
- W3030187663 cites W2730148721 @default.
- W3030187663 cites W2752230899 @default.
- W3030187663 cites W2757943290 @default.
- W3030187663 cites W2788564400 @default.
- W3030187663 cites W2801969885 @default.
- W3030187663 cites W2888720512 @default.
- W3030187663 cites W2889345494 @default.
- W3030187663 cites W2920373744 @default.
- W3030187663 cites W2921376669 @default.
- W3030187663 cites W2945421763 @default.
- W3030187663 cites W2952780227 @default.
- W3030187663 cites W2963282395 @default.
- W3030187663 cites W2964533955 @default.
- W3030187663 cites W2971992878 @default.
- W3030187663 cites W2976462046 @default.
- W3030187663 cites W2981922349 @default.
- W3030187663 cites W2982457647 @default.
- W3030187663 cites W2995388889 @default.
- W3030187663 cites W3004668135 @default.
- W3030187663 cites W3009458792 @default.
- W3030187663 cites W3011382331 @default.
- W3030187663 cites W3027743283 @default.
- W3030187663 cites W3041202696 @default.
- W3030187663 cites W3099066998 @default.
- W3030187663 cites W3100354161 @default.
- W3030187663 cites W3101011200 @default.
- W3030187663 cites W3101119258 @default.
- W3030187663 cites W3102180547 @default.
- W3030187663 cites W3105170804 @default.
- W3030187663 cites W3106465676 @default.
- W3030187663 cites W3121467866 @default.
- W3030187663 doi "https://doi.org/10.1088/1367-2630/abd7bd" @default.
- W3030187663 hasPublicationYear "2021" @default.
- W3030187663 type Work @default.
- W3030187663 sameAs 3030187663 @default.
- W3030187663 citedByCount "32" @default.
- W3030187663 countsByYear W30301876632021 @default.
- W3030187663 countsByYear W30301876632022 @default.
- W3030187663 countsByYear W30301876632023 @default.
- W3030187663 crossrefType "journal-article" @default.
- W3030187663 hasAuthorship W3030187663A5030672410 @default.
- W3030187663 hasAuthorship W3030187663A5034908857 @default.
- W3030187663 hasAuthorship W3030187663A5086280406 @default.
- W3030187663 hasBestOaLocation W30301876631 @default.
- W3030187663 hasConcept C105795698 @default.
- W3030187663 hasConcept C111472728 @default.
- W3030187663 hasConcept C119857082 @default.
- W3030187663 hasConcept C121332964 @default.
- W3030187663 hasConcept C121864883 @default.
- W3030187663 hasConcept C12713177 @default.
- W3030187663 hasConcept C1276947 @default.
- W3030187663 hasConcept C13662910 @default.