Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030361918> ?p ?o ?g. }
- W3030361918 endingPage "106553" @default.
- W3030361918 startingPage "106553" @default.
- W3030361918 abstract "Developing allometric biomass models is an important process because reliability of forest biomass and carbon estimations largely depend on the accuracy and precision of such models. The effects of tree sampling on tree aboveground biomass (AGB) prediction accuracy and precision are complex and can, therefore, be difficult to quantify. In this paper we use a Monte Carlo simulation to investigate how model prediction accuracy and precision are affected by tree sampling approaches. Because diameter at breast height (D, in cm) is the most common predictor of tree AGB (in kg dry weight), we focused our analysis on the AGB-D relationship. The following sample characteristics were investigated: (i) sample size; (ii) extent of the D-range (difference between the largest and the smallest D value); (iii) position of D-range (characterized by the starting point of D-range); and (iv) the size-distribution (distribution of D) of sample trees. We found that, although the natural variability of AGB-D relationship was a key driver for both prediction accuracy and precision, the above sample characteristics were important for improving prediction accuracy. Although having a negligible effect on precision, both sample size and size-distribution of sample trees, greatly influenced prediction accuracy. We demonstrate that selecting a constant number of trees for each D class (i.e. uniform distribution of the sample trees over the D-range) generally produced models that were more accurate predictors of AGB. The extent and position of D-range, although considerably affecting the goodness of fit and the standard errors of allometric model parameters, had only a marginal effect on AGB prediction accuracy and precision. Furthermore, we showed that R2 was a poor indicator of model prediction accuracy and precision, due to its sensitivity to changes in D-range. These findings inform certain practical recommendations we report for improving the accuracy and precision of biomass prediction." @default.
- W3030361918 created "2020-06-05" @default.
- W3030361918 creator A5044338433 @default.
- W3030361918 creator A5059756590 @default.
- W3030361918 creator A5064946210 @default.
- W3030361918 date "2020-10-01" @default.
- W3030361918 modified "2023-10-17" @default.
- W3030361918 title "Sampling trees to develop allometric biomass models: How does tree selection affect model prediction accuracy and precision?" @default.
- W3030361918 cites W1540482454 @default.
- W3030361918 cites W1626119784 @default.
- W3030361918 cites W1834931997 @default.
- W3030361918 cites W1864007918 @default.
- W3030361918 cites W1972681476 @default.
- W3030361918 cites W1977197894 @default.
- W3030361918 cites W2014419346 @default.
- W3030361918 cites W2018765432 @default.
- W3030361918 cites W2021087224 @default.
- W3030361918 cites W2021235049 @default.
- W3030361918 cites W2027699181 @default.
- W3030361918 cites W2034711606 @default.
- W3030361918 cites W2036320532 @default.
- W3030361918 cites W2077155529 @default.
- W3030361918 cites W2081029895 @default.
- W3030361918 cites W2081625437 @default.
- W3030361918 cites W2083455372 @default.
- W3030361918 cites W2094876857 @default.
- W3030361918 cites W2098935748 @default.
- W3030361918 cites W2106528177 @default.
- W3030361918 cites W2114075052 @default.
- W3030361918 cites W2119421178 @default.
- W3030361918 cites W2120634709 @default.
- W3030361918 cites W2133613984 @default.
- W3030361918 cites W2147658171 @default.
- W3030361918 cites W2157286661 @default.
- W3030361918 cites W2173555443 @default.
- W3030361918 cites W2240520954 @default.
- W3030361918 cites W2262155571 @default.
- W3030361918 cites W2323551442 @default.
- W3030361918 cites W2462610241 @default.
- W3030361918 cites W2485202016 @default.
- W3030361918 cites W2594782971 @default.
- W3030361918 cites W2614366129 @default.
- W3030361918 cites W2749650191 @default.
- W3030361918 cites W2806400648 @default.
- W3030361918 cites W2885085899 @default.
- W3030361918 cites W2905129832 @default.
- W3030361918 cites W2985312384 @default.
- W3030361918 doi "https://doi.org/10.1016/j.ecolind.2020.106553" @default.
- W3030361918 hasPublicationYear "2020" @default.
- W3030361918 type Work @default.
- W3030361918 sameAs 3030361918 @default.
- W3030361918 citedByCount "10" @default.
- W3030361918 countsByYear W30303619182020 @default.
- W3030361918 countsByYear W30303619182021 @default.
- W3030361918 countsByYear W30303619182022 @default.
- W3030361918 countsByYear W30303619182023 @default.
- W3030361918 crossrefType "journal-article" @default.
- W3030361918 hasAuthorship W3030361918A5044338433 @default.
- W3030361918 hasAuthorship W3030361918A5059756590 @default.
- W3030361918 hasAuthorship W3030361918A5064946210 @default.
- W3030361918 hasBestOaLocation W30303619181 @default.
- W3030361918 hasConcept C105795698 @default.
- W3030361918 hasConcept C106131492 @default.
- W3030361918 hasConcept C113174947 @default.
- W3030361918 hasConcept C115540264 @default.
- W3030361918 hasConcept C129848803 @default.
- W3030361918 hasConcept C134306372 @default.
- W3030361918 hasConcept C140779682 @default.
- W3030361918 hasConcept C153026981 @default.
- W3030361918 hasConcept C159985019 @default.
- W3030361918 hasConcept C185592680 @default.
- W3030361918 hasConcept C18903297 @default.
- W3030361918 hasConcept C192562407 @default.
- W3030361918 hasConcept C19499675 @default.
- W3030361918 hasConcept C198531522 @default.
- W3030361918 hasConcept C202799725 @default.
- W3030361918 hasConcept C204323151 @default.
- W3030361918 hasConcept C31972630 @default.
- W3030361918 hasConcept C33923547 @default.
- W3030361918 hasConcept C41008148 @default.
- W3030361918 hasConcept C43617362 @default.
- W3030361918 hasConcept C58330081 @default.
- W3030361918 hasConcept C86803240 @default.
- W3030361918 hasConceptScore W3030361918C105795698 @default.
- W3030361918 hasConceptScore W3030361918C106131492 @default.
- W3030361918 hasConceptScore W3030361918C113174947 @default.
- W3030361918 hasConceptScore W3030361918C115540264 @default.
- W3030361918 hasConceptScore W3030361918C129848803 @default.
- W3030361918 hasConceptScore W3030361918C134306372 @default.
- W3030361918 hasConceptScore W3030361918C140779682 @default.
- W3030361918 hasConceptScore W3030361918C153026981 @default.
- W3030361918 hasConceptScore W3030361918C159985019 @default.
- W3030361918 hasConceptScore W3030361918C185592680 @default.
- W3030361918 hasConceptScore W3030361918C18903297 @default.
- W3030361918 hasConceptScore W3030361918C192562407 @default.
- W3030361918 hasConceptScore W3030361918C19499675 @default.
- W3030361918 hasConceptScore W3030361918C198531522 @default.
- W3030361918 hasConceptScore W3030361918C202799725 @default.