Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030728358> ?p ?o ?g. }
- W3030728358 endingPage "112984" @default.
- W3030728358 startingPage "112984" @default.
- W3030728358 abstract "The Hopfield neural network (HNN) is one of the most used neural network architectures, it has been used to solve ill-posed problems with great success. Some works in recent years have incorporated fractional-order derivative with respect to time into original Hopfield neural network model. The motivation for this proposal is that it will be included nonlocal features in the original model. However, these studies were restricted to answer questions about the existence, uniqueness and stability of the equilibrium point for the neural network equation system used. The question that was addressed here is how the fractional-order Hopfield neural network (FHNN) can be used to solve ill-posed problems in Physical-Chemistry research field and how they compare to conventional model. For this purpose, fractional-order derivative with respect to time was included on HNN equations, obtained from Lyapunov function defined by 2-norm of the residual function. Therefore, the FHNN model used here was different from that used in previous work. Three prototype problems for the examination of the FHNN model were presented and discussed. In all of them, the solution found by FHNN model was achieved in less time when compared to HNN model. In this work, the Mittag-Leffler stability of the modified FHNN model is demonstrated and used to discuss how fractional order affects the solution. This work shows how the improvement in Hopfield neural network model, using fractional derivative order, gained competitive advantages over integer order Hopfield neural networks." @default.
- W3030728358 created "2020-06-05" @default.
- W3030728358 creator A5003109175 @default.
- W3030728358 creator A5016010810 @default.
- W3030728358 creator A5025962567 @default.
- W3030728358 creator A5054068084 @default.
- W3030728358 creator A5059853280 @default.
- W3030728358 creator A5061269427 @default.
- W3030728358 date "2021-01-01" @default.
- W3030728358 modified "2023-10-17" @default.
- W3030728358 title "Solving ill-posed problems faster using fractional-order Hopfield neural network" @default.
- W3030728358 cites W1597286183 @default.
- W3030728358 cites W1963581131 @default.
- W3030728358 cites W1963675052 @default.
- W3030728358 cites W1968134101 @default.
- W3030728358 cites W1969249076 @default.
- W3030728358 cites W1972128701 @default.
- W3030728358 cites W1978349032 @default.
- W3030728358 cites W2005140191 @default.
- W3030728358 cites W2020625830 @default.
- W3030728358 cites W2033470589 @default.
- W3030728358 cites W2036258737 @default.
- W3030728358 cites W2036757385 @default.
- W3030728358 cites W2054708090 @default.
- W3030728358 cites W2058860728 @default.
- W3030728358 cites W2065788097 @default.
- W3030728358 cites W2071171832 @default.
- W3030728358 cites W2087070363 @default.
- W3030728358 cites W2112246162 @default.
- W3030728358 cites W2128084896 @default.
- W3030728358 cites W2154050526 @default.
- W3030728358 cites W2159300689 @default.
- W3030728358 cites W2256578114 @default.
- W3030728358 cites W2293014327 @default.
- W3030728358 cites W2474785193 @default.
- W3030728358 cites W2801192398 @default.
- W3030728358 cites W2899491556 @default.
- W3030728358 cites W2947009768 @default.
- W3030728358 cites W2962832549 @default.
- W3030728358 cites W2964073289 @default.
- W3030728358 cites W3007702432 @default.
- W3030728358 cites W352675123 @default.
- W3030728358 cites W893774653 @default.
- W3030728358 cites W899569261 @default.
- W3030728358 doi "https://doi.org/10.1016/j.cam.2020.112984" @default.
- W3030728358 hasPublicationYear "2021" @default.
- W3030728358 type Work @default.
- W3030728358 sameAs 3030728358 @default.
- W3030728358 citedByCount "16" @default.
- W3030728358 countsByYear W30307283582020 @default.
- W3030728358 countsByYear W30307283582021 @default.
- W3030728358 countsByYear W30307283582022 @default.
- W3030728358 countsByYear W30307283582023 @default.
- W3030728358 crossrefType "journal-article" @default.
- W3030728358 hasAuthorship W3030728358A5003109175 @default.
- W3030728358 hasAuthorship W3030728358A5016010810 @default.
- W3030728358 hasAuthorship W3030728358A5025962567 @default.
- W3030728358 hasAuthorship W3030728358A5054068084 @default.
- W3030728358 hasAuthorship W3030728358A5059853280 @default.
- W3030728358 hasAuthorship W3030728358A5061269427 @default.
- W3030728358 hasConcept C112972136 @default.
- W3030728358 hasConcept C11413529 @default.
- W3030728358 hasConcept C119857082 @default.
- W3030728358 hasConcept C121332964 @default.
- W3030728358 hasConcept C126255220 @default.
- W3030728358 hasConcept C134306372 @default.
- W3030728358 hasConcept C14036430 @default.
- W3030728358 hasConcept C154249771 @default.
- W3030728358 hasConcept C154945302 @default.
- W3030728358 hasConcept C155512373 @default.
- W3030728358 hasConcept C158622935 @default.
- W3030728358 hasConcept C17744445 @default.
- W3030728358 hasConcept C191795146 @default.
- W3030728358 hasConcept C199539241 @default.
- W3030728358 hasConcept C2777021972 @default.
- W3030728358 hasConcept C28826006 @default.
- W3030728358 hasConcept C33923547 @default.
- W3030728358 hasConcept C38365724 @default.
- W3030728358 hasConcept C41008148 @default.
- W3030728358 hasConcept C46421273 @default.
- W3030728358 hasConcept C50644808 @default.
- W3030728358 hasConcept C60640748 @default.
- W3030728358 hasConcept C62520636 @default.
- W3030728358 hasConcept C78045399 @default.
- W3030728358 hasConcept C78458016 @default.
- W3030728358 hasConcept C86803240 @default.
- W3030728358 hasConcept C94766913 @default.
- W3030728358 hasConceptScore W3030728358C112972136 @default.
- W3030728358 hasConceptScore W3030728358C11413529 @default.
- W3030728358 hasConceptScore W3030728358C119857082 @default.
- W3030728358 hasConceptScore W3030728358C121332964 @default.
- W3030728358 hasConceptScore W3030728358C126255220 @default.
- W3030728358 hasConceptScore W3030728358C134306372 @default.
- W3030728358 hasConceptScore W3030728358C14036430 @default.
- W3030728358 hasConceptScore W3030728358C154249771 @default.
- W3030728358 hasConceptScore W3030728358C154945302 @default.
- W3030728358 hasConceptScore W3030728358C155512373 @default.
- W3030728358 hasConceptScore W3030728358C158622935 @default.