Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030867923> ?p ?o ?g. }
- W3030867923 endingPage "100184" @default.
- W3030867923 startingPage "100172" @default.
- W3030867923 abstract "Software-defined Networking (SDN) has been discovered as an architecture that uses applications to make networks flexible and centrally controlled. Although SDN provides innovative management, it still susceptible to attacks daily. Traditional detection approaches may not be sufficient to contain these threats. In this paper, we present an Artificial Immune System based IDS named AIS-IDS, which is inspired by the human body's defense cells. AIS-IDS can detect variations in network behavior and identify attacks without prior knowledge about them. Along with AIS, the fuzzy logic is applied on detection to minimize the uncertainty when there is no clear boundary between anomalous and normal traffic behavior. We have simulated portscan and flooding attacks as well as used a public dataset with several types of DDoS attacks to assess our proposal. We compared the AIS-IDS performance with Naive Bayes, k-nearest neighbors, and the Local Outlier Factor. The AIS-IDS outperformed the compared algorithms, achieving f-measure rates 99.97% and 92.28% when submitted to a simulated and a public dataset, respectively." @default.
- W3030867923 created "2020-06-05" @default.
- W3030867923 creator A5004953377 @default.
- W3030867923 creator A5007366694 @default.
- W3030867923 creator A5046936081 @default.
- W3030867923 creator A5053943069 @default.
- W3030867923 date "2020-01-01" @default.
- W3030867923 modified "2023-09-30" @default.
- W3030867923 title "Artificial Immune Systems and Fuzzy Logic to Detect Flooding Attacks in Software-Defined Networks" @default.
- W3030867923 cites W1482557744 @default.
- W3030867923 cites W1924689489 @default.
- W3030867923 cites W2035497590 @default.
- W3030867923 cites W2056413992 @default.
- W3030867923 cites W2077442291 @default.
- W3030867923 cites W2129624205 @default.
- W3030867923 cites W2136451165 @default.
- W3030867923 cites W2149527700 @default.
- W3030867923 cites W2394932100 @default.
- W3030867923 cites W2552493337 @default.
- W3030867923 cites W2586120503 @default.
- W3030867923 cites W2619636815 @default.
- W3030867923 cites W2734140326 @default.
- W3030867923 cites W2751079198 @default.
- W3030867923 cites W2756940441 @default.
- W3030867923 cites W2758823692 @default.
- W3030867923 cites W2775132284 @default.
- W3030867923 cites W2793836229 @default.
- W3030867923 cites W2794280825 @default.
- W3030867923 cites W2799905159 @default.
- W3030867923 cites W2804647886 @default.
- W3030867923 cites W2810550035 @default.
- W3030867923 cites W2877356277 @default.
- W3030867923 cites W2884204879 @default.
- W3030867923 cites W2885007481 @default.
- W3030867923 cites W2889941759 @default.
- W3030867923 cites W2889959183 @default.
- W3030867923 cites W2899310174 @default.
- W3030867923 cites W2908941882 @default.
- W3030867923 cites W2909089739 @default.
- W3030867923 cites W2909098677 @default.
- W3030867923 cites W2911964244 @default.
- W3030867923 cites W2914917387 @default.
- W3030867923 cites W2942166457 @default.
- W3030867923 cites W2942809477 @default.
- W3030867923 cites W2950109710 @default.
- W3030867923 cites W2952589828 @default.
- W3030867923 cites W2957864913 @default.
- W3030867923 cites W2958873936 @default.
- W3030867923 cites W2958892276 @default.
- W3030867923 cites W2965530325 @default.
- W3030867923 cites W2978725006 @default.
- W3030867923 cites W2981360785 @default.
- W3030867923 cites W2984982626 @default.
- W3030867923 cites W2985572930 @default.
- W3030867923 cites W2996172986 @default.
- W3030867923 cites W2997442262 @default.
- W3030867923 cites W3002765461 @default.
- W3030867923 cites W3004778666 @default.
- W3030867923 cites W3006810906 @default.
- W3030867923 cites W3007182219 @default.
- W3030867923 cites W3014732532 @default.
- W3030867923 cites W3016987480 @default.
- W3030867923 cites W4256177618 @default.
- W3030867923 doi "https://doi.org/10.1109/access.2020.2997939" @default.
- W3030867923 hasPublicationYear "2020" @default.
- W3030867923 type Work @default.
- W3030867923 sameAs 3030867923 @default.
- W3030867923 citedByCount "22" @default.
- W3030867923 countsByYear W30308679232020 @default.
- W3030867923 countsByYear W30308679232021 @default.
- W3030867923 countsByYear W30308679232022 @default.
- W3030867923 countsByYear W30308679232023 @default.
- W3030867923 crossrefType "journal-article" @default.
- W3030867923 hasAuthorship W3030867923A5004953377 @default.
- W3030867923 hasAuthorship W3030867923A5007366694 @default.
- W3030867923 hasAuthorship W3030867923A5046936081 @default.
- W3030867923 hasAuthorship W3030867923A5053943069 @default.
- W3030867923 hasBestOaLocation W30308679231 @default.
- W3030867923 hasConcept C110875604 @default.
- W3030867923 hasConcept C111919701 @default.
- W3030867923 hasConcept C119857082 @default.
- W3030867923 hasConcept C12267149 @default.
- W3030867923 hasConcept C124101348 @default.
- W3030867923 hasConcept C154945302 @default.
- W3030867923 hasConcept C15744967 @default.
- W3030867923 hasConcept C186594467 @default.
- W3030867923 hasConcept C2777904410 @default.
- W3030867923 hasConcept C2780009758 @default.
- W3030867923 hasConcept C35525427 @default.
- W3030867923 hasConcept C38652104 @default.
- W3030867923 hasConcept C38822068 @default.
- W3030867923 hasConcept C41008148 @default.
- W3030867923 hasConcept C52001869 @default.
- W3030867923 hasConcept C542102704 @default.
- W3030867923 hasConcept C58166 @default.
- W3030867923 hasConcept C739882 @default.
- W3030867923 hasConcept C93768804 @default.
- W3030867923 hasConceptScore W3030867923C110875604 @default.