Matches in SemOpenAlex for { <https://semopenalex.org/work/W3030883634> ?p ?o ?g. }
- W3030883634 endingPage "4124" @default.
- W3030883634 startingPage "4115" @default.
- W3030883634 abstract "Purpose High-dose-rate (HDR) brachytherapy is an established technique to be used as monotherapy option or focal boost in conjunction with external beam radiation therapy (EBRT) for treating prostate cancer. Radiation source path reconstruction is a critical procedure in HDR treatment planning. Manually identifying the source path is labor intensive and time inefficient. In recent years, magnetic resonance imaging (MRI) has become a valuable imaging modality for image-guided HDR prostate brachytherapy due to its superb soft-tissue contrast for target delineation and normal tissue contouring. The purpose of this study is to investigate a deep-learning-based method to automatically reconstruct multiple catheters in MRI for prostate cancer HDR brachytherapy treatment planning. Methods Attention gated U-Net incorporated with total variation (TV) regularization model was developed for multi-catheter segmentation in MRI. The attention gates were used to improve the accuracy of identifying small catheter points, while TV regularization was adopted to encode the natural spatial continuity of catheters into the model. The model was trained using the binary catheter annotation images offered by experienced physicists as ground truth paired with original MRI images. After the network was trained, MR images of a new prostate cancer patient receiving HDR brachytherapy were fed into the model to predict the locations and shapes of all the catheters. Quantitative assessments of our proposed method were based on catheter shaft and tip errors compared to the ground truth. Results Our method detected 299 catheters from 20 patients receiving HDR prostate brachytherapy with a catheter tip error of 0.37 ± 1.68 mm and a catheter shaft error of 0.93 ± 0.50 mm. For detection of catheter tips, our method resulted in 87% of the catheter tips within an error of less than ± 2.0 mm, and more than 71% of the tips can be localized within an absolute error of no >1.0 mm. For catheter shaft localization, 97% of catheters were detected with an error of <2.0 mm, while 63% were within 1.0 mm. Conclusions In this study, we proposed a novel multi-catheter detection method to precisely localize the tips and shafts of catheters in three-dimensional MRI images of HDR prostate brachytherapy. It paves the way for elevating the quality and outcome of MRI-guided HDR prostate brachytherapy." @default.
- W3030883634 created "2020-06-05" @default.
- W3030883634 creator A5009731683 @default.
- W3030883634 creator A5011903902 @default.
- W3030883634 creator A5013065761 @default.
- W3030883634 creator A5024852113 @default.
- W3030883634 creator A5026088869 @default.
- W3030883634 creator A5026661364 @default.
- W3030883634 creator A5030054597 @default.
- W3030883634 creator A5033144305 @default.
- W3030883634 creator A5049656223 @default.
- W3030883634 creator A5052639870 @default.
- W3030883634 date "2020-06-15" @default.
- W3030883634 modified "2023-10-05" @default.
- W3030883634 title "Automatic multi‐catheter detection using deeply supervised convolutional neural network in MRI‐guided HDR prostate brachytherapy" @default.
- W3030883634 cites W1901129140 @default.
- W3030883634 cites W1909935897 @default.
- W3030883634 cites W2009499002 @default.
- W3030883634 cites W2022460254 @default.
- W3030883634 cites W2027904611 @default.
- W3030883634 cites W2031966982 @default.
- W3030883634 cites W2034815882 @default.
- W3030883634 cites W2043289209 @default.
- W3030883634 cites W2074654463 @default.
- W3030883634 cites W2086604707 @default.
- W3030883634 cites W2117340355 @default.
- W3030883634 cites W2117530999 @default.
- W3030883634 cites W2130787037 @default.
- W3030883634 cites W2131420706 @default.
- W3030883634 cites W2161327320 @default.
- W3030883634 cites W2290034687 @default.
- W3030883634 cites W2334417331 @default.
- W3030883634 cites W2404874871 @default.
- W3030883634 cites W2557956685 @default.
- W3030883634 cites W2588358834 @default.
- W3030883634 cites W2593204990 @default.
- W3030883634 cites W2736940825 @default.
- W3030883634 cites W2761196163 @default.
- W3030883634 cites W2771418332 @default.
- W3030883634 cites W2805035545 @default.
- W3030883634 cites W2887049939 @default.
- W3030883634 cites W2888358068 @default.
- W3030883634 cites W2894315883 @default.
- W3030883634 cites W2897767703 @default.
- W3030883634 cites W2911188335 @default.
- W3030883634 cites W2914533527 @default.
- W3030883634 cites W2914806156 @default.
- W3030883634 cites W2916412824 @default.
- W3030883634 cites W2924184994 @default.
- W3030883634 cites W2942718495 @default.
- W3030883634 cites W2944109339 @default.
- W3030883634 cites W2954191198 @default.
- W3030883634 cites W2966272446 @default.
- W3030883634 cites W2975799947 @default.
- W3030883634 cites W2980323948 @default.
- W3030883634 cites W2989769843 @default.
- W3030883634 cites W2995095597 @default.
- W3030883634 cites W3011143832 @default.
- W3030883634 doi "https://doi.org/10.1002/mp.14307" @default.
- W3030883634 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7708403" @default.
- W3030883634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32484573" @default.
- W3030883634 hasPublicationYear "2020" @default.
- W3030883634 type Work @default.
- W3030883634 sameAs 3030883634 @default.
- W3030883634 citedByCount "24" @default.
- W3030883634 countsByYear W30308836342020 @default.
- W3030883634 countsByYear W30308836342021 @default.
- W3030883634 countsByYear W30308836342022 @default.
- W3030883634 countsByYear W30308836342023 @default.
- W3030883634 crossrefType "journal-article" @default.
- W3030883634 hasAuthorship W3030883634A5009731683 @default.
- W3030883634 hasAuthorship W3030883634A5011903902 @default.
- W3030883634 hasAuthorship W3030883634A5013065761 @default.
- W3030883634 hasAuthorship W3030883634A5024852113 @default.
- W3030883634 hasAuthorship W3030883634A5026088869 @default.
- W3030883634 hasAuthorship W3030883634A5026661364 @default.
- W3030883634 hasAuthorship W3030883634A5030054597 @default.
- W3030883634 hasAuthorship W3030883634A5033144305 @default.
- W3030883634 hasAuthorship W3030883634A5049656223 @default.
- W3030883634 hasAuthorship W3030883634A5052639870 @default.
- W3030883634 hasBestOaLocation W30308836341 @default.
- W3030883634 hasConcept C121608353 @default.
- W3030883634 hasConcept C121684516 @default.
- W3030883634 hasConcept C126322002 @default.
- W3030883634 hasConcept C126838900 @default.
- W3030883634 hasConcept C143409427 @default.
- W3030883634 hasConcept C146849305 @default.
- W3030883634 hasConcept C154945302 @default.
- W3030883634 hasConcept C19527891 @default.
- W3030883634 hasConcept C201645570 @default.
- W3030883634 hasConcept C2777416452 @default.
- W3030883634 hasConcept C2778648096 @default.
- W3030883634 hasConcept C2779104521 @default.
- W3030883634 hasConcept C2780192828 @default.
- W3030883634 hasConcept C31972630 @default.
- W3030883634 hasConcept C41008148 @default.
- W3030883634 hasConcept C509974204 @default.
- W3030883634 hasConcept C71924100 @default.