Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031192866> ?p ?o ?g. }
- W3031192866 abstract "Metal-insulator-metal tunnel junctions (MIMTJs) are an enabling technology for future electronics including advanced computing, data storage, sensors, etc. MIMTJs are formed by inserting an ultrathin insulating layer, known as the tunnel barrier (TB), between metal electrodes. Devices based on MIMTJs have advantages of enhanced quantum coherent transport, fast speed, small size, and energy efficiency. The performance of MIMTJs depends critically on the thickness and quality of the tunnel barrier. Specifically, the tunneling current, for example, the superconducting critical current in superconductor-insulator-superconductor Josephson junctions (JJs) or the spin tunneling current in ferromagnetic-insulator-ferromagnetic magnetic tunnel junctions (MTJs), decreases exponentially with the TB thickness. This means thinner TBs would enable stronger coherent tunneling in MIMTJs. In addition, the defects in the TBs can degrade the quantum coherence of electrons (spins) of JJs and MTJs, respectively, resulting in decoherence and degraded performance of the MIMTJs. This justifies the urgent need in research and development of ultrathin (subnanometers to 1 nm) pinhole-free and defect-free TBs beyond the current state-of-the-art TBs of larger thickness (>1–2 nm) and high defect concentration made using thermal diffusion of oxygen or physical vapor deposition (PVD) including magnetron sputtering and molecular beam epitaxy. Atomic layer deposition (ALD) can provide a unique resolution to achieving ultrathin and defect-free dielectric TBs for high-performance MIMTJs for future electronics. In this article, a review on their recent effort in the development of in vacuo ALD for the fabrication of ultrathin TBs for JJs and MTJs is presented. A custom-designed system that integrates high-vacuum/ultrahigh-vacuum PVD, ALD, and scanning probe microscopy was established for in vacuo fabrication of MIMTJs and characterization of the electronic properties of ALD TBs including Al2O3, MgO, and Al2MgO4 on both superconductor metals (Al) and ferromagnetic metals (Fe and FeCoB). Capacitors with ALD dielectric of thickness in the range of 1–5 nm were also constructed for the characterization of the dielectric properties of the ALD TBs. The authors have found that the metal-insulator interface plays a critical role in controlling the quality of the ALD TBs including the tunnel barrier height, dielectric constant, electric breakdown, and uniformity. They have shown that JJs and MTJs with 0.1–1.0 nm thick ALD Al2O3 TBs can be obtained with highly promising performance. The result obtained suggests that the in vacuo ALD may provide a unique approach toward MIMTJs with an atomic-scale control of the device structure required for high-performance future electronics." @default.
- W3031192866 created "2020-06-05" @default.
- W3031192866 creator A5071829523 @default.
- W3031192866 creator A5077546751 @default.
- W3031192866 creator A5090335255 @default.
- W3031192866 date "2020-05-29" @default.
- W3031192866 modified "2023-09-26" @default.
- W3031192866 title "<i>In vacuo</i>atomic layer deposition and electron tunneling characterization of ultrathin dielectric films for metal/insulator/metal tunnel junctions" @default.
- W3031192866 cites W1493462079 @default.
- W3031192866 cites W1556249099 @default.
- W3031192866 cites W1608045165 @default.
- W3031192866 cites W1608049856 @default.
- W3031192866 cites W1679597198 @default.
- W3031192866 cites W1680540811 @default.
- W3031192866 cites W1963796861 @default.
- W3031192866 cites W1965202086 @default.
- W3031192866 cites W1971070715 @default.
- W3031192866 cites W1974414386 @default.
- W3031192866 cites W1976011034 @default.
- W3031192866 cites W1978749939 @default.
- W3031192866 cites W1983336715 @default.
- W3031192866 cites W1988808284 @default.
- W3031192866 cites W1991813033 @default.
- W3031192866 cites W1995884161 @default.
- W3031192866 cites W1996962917 @default.
- W3031192866 cites W2000399637 @default.
- W3031192866 cites W2010170553 @default.
- W3031192866 cites W2010339750 @default.
- W3031192866 cites W2022197265 @default.
- W3031192866 cites W2023353733 @default.
- W3031192866 cites W2024484920 @default.
- W3031192866 cites W2024893055 @default.
- W3031192866 cites W2025898815 @default.
- W3031192866 cites W2026609365 @default.
- W3031192866 cites W2030334305 @default.
- W3031192866 cites W2031420350 @default.
- W3031192866 cites W2032267407 @default.
- W3031192866 cites W2035415368 @default.
- W3031192866 cites W2035931858 @default.
- W3031192866 cites W2036233277 @default.
- W3031192866 cites W2043580820 @default.
- W3031192866 cites W2043925361 @default.
- W3031192866 cites W2045030161 @default.
- W3031192866 cites W2053986559 @default.
- W3031192866 cites W2054443108 @default.
- W3031192866 cites W2059294295 @default.
- W3031192866 cites W2059618125 @default.
- W3031192866 cites W2060106993 @default.
- W3031192866 cites W2060547677 @default.
- W3031192866 cites W2062030903 @default.
- W3031192866 cites W2062519045 @default.
- W3031192866 cites W2063070257 @default.
- W3031192866 cites W2066715890 @default.
- W3031192866 cites W2069579511 @default.
- W3031192866 cites W2074147786 @default.
- W3031192866 cites W2077232836 @default.
- W3031192866 cites W2077932301 @default.
- W3031192866 cites W2086067776 @default.
- W3031192866 cites W2088797290 @default.
- W3031192866 cites W2091417196 @default.
- W3031192866 cites W2113353836 @default.
- W3031192866 cites W2121585532 @default.
- W3031192866 cites W2140782325 @default.
- W3031192866 cites W2142034012 @default.
- W3031192866 cites W2146421291 @default.
- W3031192866 cites W2146796006 @default.
- W3031192866 cites W2158932701 @default.
- W3031192866 cites W2164950842 @default.
- W3031192866 cites W2165806798 @default.
- W3031192866 cites W2167712537 @default.
- W3031192866 cites W2199597889 @default.
- W3031192866 cites W2315724947 @default.
- W3031192866 cites W2330685312 @default.
- W3031192866 cites W2510181173 @default.
- W3031192866 cites W2593591780 @default.
- W3031192866 cites W2763414157 @default.
- W3031192866 cites W2782382933 @default.
- W3031192866 cites W2792044088 @default.
- W3031192866 cites W2892501706 @default.
- W3031192866 cites W2905869608 @default.
- W3031192866 cites W2913020487 @default.
- W3031192866 cites W2965161987 @default.
- W3031192866 cites W3099887484 @default.
- W3031192866 cites W3100863146 @default.
- W3031192866 cites W3101288343 @default.
- W3031192866 cites W3106117604 @default.
- W3031192866 cites W3125011663 @default.
- W3031192866 cites W4250484233 @default.
- W3031192866 doi "https://doi.org/10.1116/1.5141078" @default.
- W3031192866 hasPublicationYear "2020" @default.
- W3031192866 type Work @default.
- W3031192866 sameAs 3031192866 @default.
- W3031192866 citedByCount "6" @default.
- W3031192866 countsByYear W30311928662020 @default.
- W3031192866 countsByYear W30311928662021 @default.
- W3031192866 countsByYear W30311928662022 @default.
- W3031192866 crossrefType "journal-article" @default.
- W3031192866 hasAuthorship W3031192866A5071829523 @default.
- W3031192866 hasAuthorship W3031192866A5077546751 @default.
- W3031192866 hasAuthorship W3031192866A5090335255 @default.