Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031198630> ?p ?o ?g. }
- W3031198630 endingPage "123286" @default.
- W3031198630 startingPage "123286" @default.
- W3031198630 abstract "The present article demonstrates an effective approach to model the in-silico recognition of phases in steel microstructures using the machine learning and image processing technologies. It is based on a comprehensive microstructure dataset of 192 typical steel SEM images that was created by in-house experimentation, covering a wide variation across types phases and their volume fractions, grain sizes and magnifications. The selective Gray Level Co-occurrence Matrix (GLCM) feature vector extracted from the Simple Linear Iterative Clustering (SLIC) segmented phase patches was effectively used to create a numerical dataset from the microstructure image dataset. A Multi-Layer Perceptron (MLP) model was trained for automatic and accurate recognition of the constituent phases in the microstructure using this GLCM feature vector data. The trained MLP model was able to achieve a network loss of 0.1156 with a prediction accuracy of 83.92% in training dataset and that of 0.25 and 83.5% in the validation dataset, respectively. The prediction accuracy of the proposed MLP model was found to be adequate with the confidence level in automatic recognition of various phases in the range of 77–100%. The quantitative analysis results of the phase regions and phase boundaries from each microstructure appears to be reasonably accurate. The variation in prediction of phase volume fraction against the magnifications were obtained as 16.90 ± 4.0, 70.6 ± 6.0 and 99.97 ± 0.02 (IF steel microstructure) for pearlite, martensite and ferrite phases respectively. The obtained results have been discussed in context of the knowledge of steel microstructures." @default.
- W3031198630 created "2020-06-05" @default.
- W3031198630 creator A5018063387 @default.
- W3031198630 creator A5033181114 @default.
- W3031198630 creator A5034996839 @default.
- W3031198630 creator A5038431429 @default.
- W3031198630 creator A5048178635 @default.
- W3031198630 creator A5059496811 @default.
- W3031198630 creator A5081794584 @default.
- W3031198630 date "2020-09-01" @default.
- W3031198630 modified "2023-10-07" @default.
- W3031198630 title "Modelling the steel microstructure knowledge for in-silico recognition of phases using machine learning" @default.
- W3031198630 cites W1972584137 @default.
- W3031198630 cites W1987091162 @default.
- W3031198630 cites W1998269772 @default.
- W3031198630 cites W2002016471 @default.
- W3031198630 cites W2040667075 @default.
- W3031198630 cites W2044465660 @default.
- W3031198630 cites W2049515831 @default.
- W3031198630 cites W2061045392 @default.
- W3031198630 cites W2065772713 @default.
- W3031198630 cites W2076161268 @default.
- W3031198630 cites W2094437818 @default.
- W3031198630 cites W2095727900 @default.
- W3031198630 cites W2118246710 @default.
- W3031198630 cites W2124106641 @default.
- W3031198630 cites W2155368608 @default.
- W3031198630 cites W2158581396 @default.
- W3031198630 cites W2338996000 @default.
- W3031198630 cites W2404693549 @default.
- W3031198630 cites W2462290730 @default.
- W3031198630 cites W2478343641 @default.
- W3031198630 cites W2586155783 @default.
- W3031198630 cites W2625492692 @default.
- W3031198630 cites W2777965033 @default.
- W3031198630 cites W2781468723 @default.
- W3031198630 cites W2804808564 @default.
- W3031198630 cites W2804995754 @default.
- W3031198630 cites W2885156894 @default.
- W3031198630 cites W2898492356 @default.
- W3031198630 cites W2900519412 @default.
- W3031198630 cites W2907366958 @default.
- W3031198630 cites W2907898798 @default.
- W3031198630 cites W2910302825 @default.
- W3031198630 cites W2920943913 @default.
- W3031198630 cites W2942537495 @default.
- W3031198630 cites W2945595762 @default.
- W3031198630 cites W2963365957 @default.
- W3031198630 cites W2965558330 @default.
- W3031198630 cites W2985931611 @default.
- W3031198630 cites W3000078381 @default.
- W3031198630 cites W3099859964 @default.
- W3031198630 cites W3100230575 @default.
- W3031198630 doi "https://doi.org/10.1016/j.matchemphys.2020.123286" @default.
- W3031198630 hasPublicationYear "2020" @default.
- W3031198630 type Work @default.
- W3031198630 sameAs 3031198630 @default.
- W3031198630 citedByCount "21" @default.
- W3031198630 countsByYear W30311986302021 @default.
- W3031198630 countsByYear W30311986302022 @default.
- W3031198630 countsByYear W30311986302023 @default.
- W3031198630 crossrefType "journal-article" @default.
- W3031198630 hasAuthorship W3031198630A5018063387 @default.
- W3031198630 hasAuthorship W3031198630A5033181114 @default.
- W3031198630 hasAuthorship W3031198630A5034996839 @default.
- W3031198630 hasAuthorship W3031198630A5038431429 @default.
- W3031198630 hasAuthorship W3031198630A5048178635 @default.
- W3031198630 hasAuthorship W3031198630A5059496811 @default.
- W3031198630 hasAuthorship W3031198630A5081794584 @default.
- W3031198630 hasConcept C119857082 @default.
- W3031198630 hasConcept C121332964 @default.
- W3031198630 hasConcept C12267149 @default.
- W3031198630 hasConcept C138885662 @default.
- W3031198630 hasConcept C151730666 @default.
- W3031198630 hasConcept C153180895 @default.
- W3031198630 hasConcept C154945302 @default.
- W3031198630 hasConcept C159985019 @default.
- W3031198630 hasConcept C179717631 @default.
- W3031198630 hasConcept C192562407 @default.
- W3031198630 hasConcept C2776401178 @default.
- W3031198630 hasConcept C2779343474 @default.
- W3031198630 hasConcept C41008148 @default.
- W3031198630 hasConcept C41895202 @default.
- W3031198630 hasConcept C44280652 @default.
- W3031198630 hasConcept C50644808 @default.
- W3031198630 hasConcept C52622490 @default.
- W3031198630 hasConcept C5701217 @default.
- W3031198630 hasConcept C62520636 @default.
- W3031198630 hasConcept C86803240 @default.
- W3031198630 hasConcept C87976508 @default.
- W3031198630 hasConcept C96288455 @default.
- W3031198630 hasConceptScore W3031198630C119857082 @default.
- W3031198630 hasConceptScore W3031198630C121332964 @default.
- W3031198630 hasConceptScore W3031198630C12267149 @default.
- W3031198630 hasConceptScore W3031198630C138885662 @default.
- W3031198630 hasConceptScore W3031198630C151730666 @default.
- W3031198630 hasConceptScore W3031198630C153180895 @default.
- W3031198630 hasConceptScore W3031198630C154945302 @default.