Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031383804> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3031383804 endingPage "1254" @default.
- W3031383804 startingPage "1248" @default.
- W3031383804 abstract "ObjectiveTo explore the value of CT images in distinguishing perihematomal edema in basal ganglia intracerebral hemorrhage with normal brain tissue, and its significance in assessing patients' conditions and prognoses.MethodsCT images and clinical data of 120 patients with basal ganglia intracerebral hemorrhage admitted to our hospital from January 2017 to September 2018 were collected, and these 120 patients were randomly assigned to group of training data set (n=90) and group of test data set (n=30) at a ratio of 3:1. The texture analysis software Mazda was used to preprocess the CT images and manually sketch the regions of interest (ROIs) to extract the texture parameters in patients from the group of training data set; Mazda software provides texture feature selection methods including mutual information (MI), Fisher coefficients (Fisher), classification error probability combined with average correlation coefficients (POE+ACC), and texture feature analysis including raw data analysis (RDA), principal component analysis (PCA), linear classification analysis (LDA) and nonlinear classification analysis (NDA); texture feature selection methods and texture feature analysis were grouped by pairs to establish different image omics labels; the error rate was used to evaluate the performance of different labels. Random forest model, support vector machine model and neural network model were built for texture parameters in patients from the group of test data set, and texture parameters extracted from patients from group of training data set were imported into these models; receiver operating characteristics curve was used to assess the performance of models. According to the maximum diameter of the hematomas, Glasgow coma scale (GCS) scores at admission, median of National Institute of Health Stroke Scale (NIHSS) scores 3 months after follow up, all patients were divided into two groups; Mazda software was used repeatedly for dimension reduction and establishment of different images omics labels; the sum of error rates from the two groups was taken as total error rate to evaluate the significance of different labels in predicting patients' conditions and prognoses.ResultsA total of 295 texture parameters were extracted from the ROIs of the best CT images of 90 patients from group of training data set, and 10 characteristic texture parameters were obtained by each of the three dimensionality reduction methods. Among all texture post-processing methods, the lowest error rate was 2.22% for POE+ACC/NDA; AUCs were 0.87 (95% CI: 0.76-0.97), 0.81 (95% CI: 0.72-0.93) and 0.76 (95%CI: 0.67-0.89) for random forest model, support vector machine model and neural network model in the test dataset, respectively, which indicated that random forest model had the best forecast performance. The imaging omics labels established based on POE+ACC/NDA had the lowest total error rate for analysis of maximum diameter of hematoma and GCS scores at admission (26.66%, 23.33%); the imaging omics labels established based on Fisher's coefficient method and NDA had the lowest total error rate (33.33%) for analysis of NIHSS scores at 3 months of follow up.ConclusionRadiomic method with proper model is of certain value in distinguishing erihematomal edema in basal ganglia intracerebral hemorrhage with normal brain tissue, and also has certain significance in evaluating the patient's conditions and prognoses.Key words: Intracerebral hemorrhage; Basal ganglia; Edema; CT radiomics; Artificial intelligence" @default.
- W3031383804 created "2020-06-05" @default.
- W3031383804 creator A5019366289 @default.
- W3031383804 creator A5035465674 @default.
- W3031383804 creator A5058713341 @default.
- W3031383804 creator A5077323813 @default.
- W3031383804 date "2019-12-15" @default.
- W3031383804 modified "2023-09-23" @default.
- W3031383804 title "Perihematomal edema in basal ganglia intracerebral hemorrhage by using radiomics approach of CT images" @default.
- W3031383804 doi "https://doi.org/10.3760/cma.j.issn.1671-8925.2019.12.010" @default.
- W3031383804 hasPublicationYear "2019" @default.
- W3031383804 type Work @default.
- W3031383804 sameAs 3031383804 @default.
- W3031383804 citedByCount "1" @default.
- W3031383804 countsByYear W30313838042022 @default.
- W3031383804 crossrefType "journal-article" @default.
- W3031383804 hasAuthorship W3031383804A5019366289 @default.
- W3031383804 hasAuthorship W3031383804A5035465674 @default.
- W3031383804 hasAuthorship W3031383804A5058713341 @default.
- W3031383804 hasAuthorship W3031383804A5077323813 @default.
- W3031383804 hasConcept C105795698 @default.
- W3031383804 hasConcept C148483581 @default.
- W3031383804 hasConcept C153180895 @default.
- W3031383804 hasConcept C154945302 @default.
- W3031383804 hasConcept C27438332 @default.
- W3031383804 hasConcept C33923547 @default.
- W3031383804 hasConcept C41008148 @default.
- W3031383804 hasConcept C58471807 @default.
- W3031383804 hasConcept C58489278 @default.
- W3031383804 hasConceptScore W3031383804C105795698 @default.
- W3031383804 hasConceptScore W3031383804C148483581 @default.
- W3031383804 hasConceptScore W3031383804C153180895 @default.
- W3031383804 hasConceptScore W3031383804C154945302 @default.
- W3031383804 hasConceptScore W3031383804C27438332 @default.
- W3031383804 hasConceptScore W3031383804C33923547 @default.
- W3031383804 hasConceptScore W3031383804C41008148 @default.
- W3031383804 hasConceptScore W3031383804C58471807 @default.
- W3031383804 hasConceptScore W3031383804C58489278 @default.
- W3031383804 hasIssue "12" @default.
- W3031383804 hasLocation W30313838041 @default.
- W3031383804 hasOpenAccess W3031383804 @default.
- W3031383804 hasPrimaryLocation W30313838041 @default.
- W3031383804 hasRelatedWork W1175029604 @default.
- W3031383804 hasRelatedWork W1966525967 @default.
- W3031383804 hasRelatedWork W2013401701 @default.
- W3031383804 hasRelatedWork W2588271337 @default.
- W3031383804 hasRelatedWork W2774160049 @default.
- W3031383804 hasRelatedWork W2900877770 @default.
- W3031383804 hasRelatedWork W2923200634 @default.
- W3031383804 hasRelatedWork W2954608990 @default.
- W3031383804 hasRelatedWork W2966843826 @default.
- W3031383804 hasRelatedWork W2970347208 @default.
- W3031383804 hasRelatedWork W2972313349 @default.
- W3031383804 hasRelatedWork W2986317110 @default.
- W3031383804 hasRelatedWork W2998922552 @default.
- W3031383804 hasRelatedWork W3024877989 @default.
- W3031383804 hasRelatedWork W3029482885 @default.
- W3031383804 hasRelatedWork W3030937822 @default.
- W3031383804 hasRelatedWork W3037425369 @default.
- W3031383804 hasRelatedWork W3087629670 @default.
- W3031383804 hasRelatedWork W3159047581 @default.
- W3031383804 hasRelatedWork W3159225726 @default.
- W3031383804 hasVolume "18" @default.
- W3031383804 isParatext "false" @default.
- W3031383804 isRetracted "false" @default.
- W3031383804 magId "3031383804" @default.
- W3031383804 workType "article" @default.