Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031406668> ?p ?o ?g. }
- W3031406668 endingPage "e17574" @default.
- W3031406668 startingPage "e17574" @default.
- W3031406668 abstract "Background Over the last two decades, deaths associated with opioids have escalated in number and geographic spread, impacting more and more individuals, families, and communities. Reflecting on the shifting nature of the opioid overdose crisis, Dasgupta, Beletsky, and Ciccarone offer a triphasic framework to explain that opioid overdose deaths (OODs) shifted from prescription opioids for pain (beginning in 2000), to heroin (2010 to 2015), and then to synthetic opioids (beginning in 2013). Given the rapidly shifting nature of OODs, timelier surveillance data are critical to inform strategies that combat the opioid crisis. Using easily accessible and near real-time social media data to improve public health surveillance efforts related to the opioid crisis is a promising area of research. Objective This study explored the potential of using Twitter data to monitor the opioid epidemic. Specifically, this study investigated the extent to which the content of opioid-related tweets corresponds with the triphasic nature of the opioid crisis and correlates with OODs in North Carolina between 2009 and 2017. Methods Opioid-related Twitter posts were obtained using Crimson Hexagon, and were classified as relating to prescription opioids, heroin, and synthetic opioids using natural language processing. This process resulted in a corpus of 100,777 posts consisting of tweets, retweets, mentions, and replies. Using a random sample of 10,000 posts from the corpus, we identified opioid-related terms by analyzing word frequency for each year. OODs were obtained from the Multiple Cause of Death database from the Centers for Disease Control and Prevention Wide-ranging Online Data for Epidemiologic Research (CDC WONDER). Least squares regression and Granger tests compared patterns of opioid-related posts with OODs. Results The pattern of tweets related to prescription opioids, heroin, and synthetic opioids resembled the triphasic nature of OODs. For prescription opioids, tweet counts and OODs were statistically unrelated. Tweets mentioning heroin and synthetic opioids were significantly associated with heroin OODs and synthetic OODs in the same year (P=.01 and P<.001, respectively), as well as in the following year (P=.03 and P=.01, respectively). Moreover, heroin tweets in a given year predicted heroin deaths better than lagged heroin OODs alone (P=.03). Conclusions Findings support using Twitter data as a timely indicator of opioid overdose mortality, especially for heroin." @default.
- W3031406668 created "2020-06-05" @default.
- W3031406668 creator A5003653980 @default.
- W3031406668 creator A5008173332 @default.
- W3031406668 creator A5009826825 @default.
- W3031406668 creator A5010814111 @default.
- W3031406668 creator A5025926714 @default.
- W3031406668 date "2020-06-24" @default.
- W3031406668 modified "2023-10-02" @default.
- W3031406668 title "Using Twitter to Surveil the Opioid Epidemic in North Carolina: An Exploratory Study" @default.
- W3031406668 cites W1529574916 @default.
- W3031406668 cites W1596538443 @default.
- W3031406668 cites W1975994995 @default.
- W3031406668 cites W1979941595 @default.
- W3031406668 cites W2001653897 @default.
- W3031406668 cites W2005007001 @default.
- W3031406668 cites W2011273513 @default.
- W3031406668 cites W2032046849 @default.
- W3031406668 cites W2118778378 @default.
- W3031406668 cites W2160481489 @default.
- W3031406668 cites W2160542585 @default.
- W3031406668 cites W2178225550 @default.
- W3031406668 cites W2209302491 @default.
- W3031406668 cites W2332714705 @default.
- W3031406668 cites W2338747555 @default.
- W3031406668 cites W2527640093 @default.
- W3031406668 cites W2554777155 @default.
- W3031406668 cites W2563873792 @default.
- W3031406668 cites W2738102631 @default.
- W3031406668 cites W2740476430 @default.
- W3031406668 cites W2741216199 @default.
- W3031406668 cites W2749051992 @default.
- W3031406668 cites W2754444075 @default.
- W3031406668 cites W2761722162 @default.
- W3031406668 cites W2766959695 @default.
- W3031406668 cites W2776828305 @default.
- W3031406668 cites W2801060237 @default.
- W3031406668 cites W2801922514 @default.
- W3031406668 cites W2864897842 @default.
- W3031406668 cites W2989502255 @default.
- W3031406668 cites W2994658918 @default.
- W3031406668 cites W3003451442 @default.
- W3031406668 cites W3006634384 @default.
- W3031406668 cites W3012261821 @default.
- W3031406668 cites W3013882954 @default.
- W3031406668 doi "https://doi.org/10.2196/17574" @default.
- W3031406668 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7380977" @default.
- W3031406668 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32469322" @default.
- W3031406668 hasPublicationYear "2020" @default.
- W3031406668 type Work @default.
- W3031406668 sameAs 3031406668 @default.
- W3031406668 citedByCount "19" @default.
- W3031406668 countsByYear W30314066682021 @default.
- W3031406668 countsByYear W30314066682022 @default.
- W3031406668 countsByYear W30314066682023 @default.
- W3031406668 crossrefType "journal-article" @default.
- W3031406668 hasAuthorship W3031406668A5003653980 @default.
- W3031406668 hasAuthorship W3031406668A5008173332 @default.
- W3031406668 hasAuthorship W3031406668A5009826825 @default.
- W3031406668 hasAuthorship W3031406668A5010814111 @default.
- W3031406668 hasAuthorship W3031406668A5025926714 @default.
- W3031406668 hasBestOaLocation W30314066681 @default.
- W3031406668 hasConcept C118552586 @default.
- W3031406668 hasConcept C126322002 @default.
- W3031406668 hasConcept C138816342 @default.
- W3031406668 hasConcept C15744967 @default.
- W3031406668 hasConcept C159110408 @default.
- W3031406668 hasConcept C170493617 @default.
- W3031406668 hasConcept C2426938 @default.
- W3031406668 hasConcept C2778750930 @default.
- W3031406668 hasConcept C2778903686 @default.
- W3031406668 hasConcept C2779148768 @default.
- W3031406668 hasConcept C2780035454 @default.
- W3031406668 hasConcept C2781063702 @default.
- W3031406668 hasConcept C71924100 @default.
- W3031406668 hasConcept C98274493 @default.
- W3031406668 hasConceptScore W3031406668C118552586 @default.
- W3031406668 hasConceptScore W3031406668C126322002 @default.
- W3031406668 hasConceptScore W3031406668C138816342 @default.
- W3031406668 hasConceptScore W3031406668C15744967 @default.
- W3031406668 hasConceptScore W3031406668C159110408 @default.
- W3031406668 hasConceptScore W3031406668C170493617 @default.
- W3031406668 hasConceptScore W3031406668C2426938 @default.
- W3031406668 hasConceptScore W3031406668C2778750930 @default.
- W3031406668 hasConceptScore W3031406668C2778903686 @default.
- W3031406668 hasConceptScore W3031406668C2779148768 @default.
- W3031406668 hasConceptScore W3031406668C2780035454 @default.
- W3031406668 hasConceptScore W3031406668C2781063702 @default.
- W3031406668 hasConceptScore W3031406668C71924100 @default.
- W3031406668 hasConceptScore W3031406668C98274493 @default.
- W3031406668 hasIssue "2" @default.
- W3031406668 hasLocation W30314066681 @default.
- W3031406668 hasLocation W30314066682 @default.
- W3031406668 hasOpenAccess W3031406668 @default.
- W3031406668 hasPrimaryLocation W30314066681 @default.
- W3031406668 hasRelatedWork W1985093540 @default.
- W3031406668 hasRelatedWork W2007414327 @default.
- W3031406668 hasRelatedWork W2151383246 @default.