Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031473178> ?p ?o ?g. }
- W3031473178 abstract "Abstract The pervasive use of distributional semantic models or word embeddings for both cognitive modeling and practical application is because of their remarkable ability to represent the meanings of words. However, relatively little effort has been made to explore what types of information are encoded in distributional word vectors. Knowing the internal knowledge embedded in word vectors is important for cognitive modeling using distributional semantic models. Therefore, in this paper, we attempt to identify the knowledge encoded in word vectors by conducting a computational experiment using Binder et al.'s (2016) featural conceptual representations based on neurobiologically motivated attributes. In an experiment, these conceptual vectors are predicted from text‐based word vectors using a neural network and linear transformation, and prediction performance is compared among various types of information. The analysis demonstrates that abstract information is generally predicted more accurately by word vectors than perceptual and spatiotemporal information, and specifically, the prediction accuracy of cognitive and social information is higher. Emotional information is also found to be successfully predicted for abstract words. These results indicate that language can be a major source of knowledge about abstract attributes, and they support the recent view that emphasizes the importance of language for abstract concepts. Furthermore, we show that word vectors can capture some types of perceptual and spatiotemporal information about concrete concepts and some relevant word categories. This suggests that language statistics can encode more perceptual knowledge than often expected." @default.
- W3031473178 created "2020-06-05" @default.
- W3031473178 creator A5003814586 @default.
- W3031473178 date "2020-05-26" @default.
- W3031473178 modified "2023-09-27" @default.
- W3031473178 title "Exploring What Is Encoded in Distributional Word Vectors: A Neurobiologically Motivated Analysis" @default.
- W3031473178 cites W129305155 @default.
- W3031473178 cites W1534993021 @default.
- W3031473178 cites W1615991656 @default.
- W3031473178 cites W178754640 @default.
- W3031473178 cites W1822239915 @default.
- W3031473178 cites W1831971790 @default.
- W3031473178 cites W1937704532 @default.
- W3031473178 cites W1965580172 @default.
- W3031473178 cites W1969138120 @default.
- W3031473178 cites W1974991592 @default.
- W3031473178 cites W1975849605 @default.
- W3031473178 cites W1978400666 @default.
- W3031473178 cites W1981617416 @default.
- W3031473178 cites W1983578042 @default.
- W3031473178 cites W1984251878 @default.
- W3031473178 cites W1986227429 @default.
- W3031473178 cites W1986707196 @default.
- W3031473178 cites W1990368529 @default.
- W3031473178 cites W2030440611 @default.
- W3031473178 cites W2036931463 @default.
- W3031473178 cites W2045333577 @default.
- W3031473178 cites W2048795844 @default.
- W3031473178 cites W2054566922 @default.
- W3031473178 cites W2056491869 @default.
- W3031473178 cites W2078894097 @default.
- W3031473178 cites W2087946919 @default.
- W3031473178 cites W2106346128 @default.
- W3031473178 cites W2110065044 @default.
- W3031473178 cites W2110485445 @default.
- W3031473178 cites W2112184938 @default.
- W3031473178 cites W2117352571 @default.
- W3031473178 cites W2124217660 @default.
- W3031473178 cites W2131829566 @default.
- W3031473178 cites W2154406326 @default.
- W3031473178 cites W2168217710 @default.
- W3031473178 cites W2250539671 @default.
- W3031473178 cites W2250676463 @default.
- W3031473178 cites W2301110989 @default.
- W3031473178 cites W2344975321 @default.
- W3031473178 cites W2345836734 @default.
- W3031473178 cites W2412122638 @default.
- W3031473178 cites W2415973339 @default.
- W3031473178 cites W2434184590 @default.
- W3031473178 cites W2463877837 @default.
- W3031473178 cites W2559169016 @default.
- W3031473178 cites W2579313781 @default.
- W3031473178 cites W2592280765 @default.
- W3031473178 cites W2742572803 @default.
- W3031473178 cites W2752192300 @default.
- W3031473178 cites W2763088512 @default.
- W3031473178 cites W2764120185 @default.
- W3031473178 cites W2782213998 @default.
- W3031473178 cites W2788371362 @default.
- W3031473178 cites W2797289246 @default.
- W3031473178 cites W2808643684 @default.
- W3031473178 cites W2809551939 @default.
- W3031473178 cites W2890073522 @default.
- W3031473178 cites W2893425640 @default.
- W3031473178 cites W2913142708 @default.
- W3031473178 cites W2951193962 @default.
- W3031473178 cites W2962769333 @default.
- W3031473178 cites W2978714200 @default.
- W3031473178 cites W3127524601 @default.
- W3031473178 cites W4210984920 @default.
- W3031473178 cites W4249882522 @default.
- W3031473178 cites W4312251165 @default.
- W3031473178 doi "https://doi.org/10.1111/cogs.12844" @default.
- W3031473178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32458523" @default.
- W3031473178 hasPublicationYear "2020" @default.
- W3031473178 type Work @default.
- W3031473178 sameAs 3031473178 @default.
- W3031473178 citedByCount "24" @default.
- W3031473178 countsByYear W30314731782020 @default.
- W3031473178 countsByYear W30314731782021 @default.
- W3031473178 countsByYear W30314731782022 @default.
- W3031473178 countsByYear W30314731782023 @default.
- W3031473178 crossrefType "journal-article" @default.
- W3031473178 hasAuthorship W3031473178A5003814586 @default.
- W3031473178 hasBestOaLocation W30314731781 @default.
- W3031473178 hasConcept C104317684 @default.
- W3031473178 hasConcept C138885662 @default.
- W3031473178 hasConcept C154945302 @default.
- W3031473178 hasConcept C15744967 @default.
- W3031473178 hasConcept C169760540 @default.
- W3031473178 hasConcept C169900460 @default.
- W3031473178 hasConcept C185592680 @default.
- W3031473178 hasConcept C204321447 @default.
- W3031473178 hasConcept C26760741 @default.
- W3031473178 hasConcept C41008148 @default.
- W3031473178 hasConcept C41895202 @default.
- W3031473178 hasConcept C55493867 @default.
- W3031473178 hasConcept C66746571 @default.
- W3031473178 hasConcept C90805587 @default.
- W3031473178 hasConceptScore W3031473178C104317684 @default.