Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031497980> ?p ?o ?g. }
- W3031497980 endingPage "100980" @default.
- W3031497980 startingPage "100980" @default.
- W3031497980 abstract "Recent works have shown that the L1 and L∞-gains are natural performance criteria for linear positive systems as they can be exactly characterized by linear programs. Those performance measures have also been extended to linear positive impulsive and switched systems through the concept of hybrid L1×ℓ1-gain. For LTI positive systems, the L∞-gain is known to coincide with the L1-gain of the transposed system and, as a consequence, one can use linear copositive Lyapunov functions for characterizing the L∞-gain of LTI positive systems. Unfortunately, this does not hold in the time-varying setting and one cannot characterize the hybrid L∞×ℓ∞-gain of a linear positive impulsive system in terms of the hybrid L1×ℓ1-gain of the transposed system. To solve this, an approach based on the use of linear copositive max-separable Lyapunov functions is proposed. We first prove very general necessary and sufficient conditions characterizing the exponential stability and the L∞×ℓ∞- and L1×ℓ1-gains using linear max-separable copositive and linear sum-separable copositive Lyapunov functions. These two results are then connected together using operator theoretic results and the notion of adjoint system. Results characterizing the stability and the hybrid L∞×ℓ∞-gain of linear positive impulsive systems under arbitrary, constant, minimum, and range dwell-time constraints are then derived from the previously obtained general results. These conditions are then exploited to yield constructive convex stabilization conditions via state-feedback. By reformulating linear positive switched systems as impulsive systems with multiple jump maps, stability and stabilization conditions are also obtained for linear positive switched systems. It is notably proven that the obtained conditions generalize existing ones of the literature. As all the results are stated as infinite-dimensional linear programs, sum of squares programming is used to turn those optimization problems into sufficient tractable finite-dimensional semidefinite programs. Interestingly, the relaxation becomes necessary if we allow the degrees of the polynomials to be arbitrarily large. Several particular cases of the approach such as LTV positive systems and periodic positive systems are also discussed for completeness. Examples are given for illustration." @default.
- W3031497980 created "2020-06-05" @default.
- W3031497980 creator A5000665137 @default.
- W3031497980 date "2021-02-01" @default.
- W3031497980 modified "2023-09-30" @default.
- W3031497980 title "Hybrid <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline id=d1e405 altimg=si1008.svg><mml:mrow><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msub><mml:mo linebreak=goodbreak linebreakstyle=after>×</mml:mo><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>-performance analysis and control of linear time-varying impulsive and switched positive …" @default.
- W3031497980 cites W1487072095 @default.
- W3031497980 cites W1848826399 @default.
- W3031497980 cites W1974336206 @default.
- W3031497980 cites W1981336230 @default.
- W3031497980 cites W1982733914 @default.
- W3031497980 cites W1984689094 @default.
- W3031497980 cites W2005415772 @default.
- W3031497980 cites W2010799625 @default.
- W3031497980 cites W2015428454 @default.
- W3031497980 cites W2017551827 @default.
- W3031497980 cites W2023390722 @default.
- W3031497980 cites W2026603289 @default.
- W3031497980 cites W2033505412 @default.
- W3031497980 cites W2037009101 @default.
- W3031497980 cites W2062251837 @default.
- W3031497980 cites W2063732874 @default.
- W3031497980 cites W2080739873 @default.
- W3031497980 cites W2089924726 @default.
- W3031497980 cites W2093484645 @default.
- W3031497980 cites W2268002914 @default.
- W3031497980 cites W2280250534 @default.
- W3031497980 cites W2319032870 @default.
- W3031497980 cites W2472786230 @default.
- W3031497980 cites W2542917208 @default.
- W3031497980 cites W2551782723 @default.
- W3031497980 cites W2588279938 @default.
- W3031497980 cites W2612673814 @default.
- W3031497980 cites W2954102541 @default.
- W3031497980 cites W2954397170 @default.
- W3031497980 cites W2962804666 @default.
- W3031497980 cites W2962865436 @default.
- W3031497980 cites W2962924588 @default.
- W3031497980 cites W2962982708 @default.
- W3031497980 cites W2963267494 @default.
- W3031497980 cites W2963716017 @default.
- W3031497980 cites W2963795895 @default.
- W3031497980 cites W2964052983 @default.
- W3031497980 cites W2964239200 @default.
- W3031497980 cites W2964313442 @default.
- W3031497980 cites W2973186928 @default.
- W3031497980 cites W37474330 @default.
- W3031497980 cites W4206342194 @default.
- W3031497980 cites W4255442211 @default.
- W3031497980 doi "https://doi.org/10.1016/j.nahs.2020.100980" @default.
- W3031497980 hasPublicationYear "2021" @default.
- W3031497980 type Work @default.
- W3031497980 sameAs 3031497980 @default.
- W3031497980 citedByCount "8" @default.
- W3031497980 countsByYear W30314979802021 @default.
- W3031497980 countsByYear W30314979802022 @default.
- W3031497980 countsByYear W30314979802023 @default.
- W3031497980 crossrefType "journal-article" @default.
- W3031497980 hasAuthorship W3031497980A5000665137 @default.
- W3031497980 hasConcept C112972136 @default.
- W3031497980 hasConcept C118615104 @default.
- W3031497980 hasConcept C119857082 @default.
- W3031497980 hasConcept C121332964 @default.
- W3031497980 hasConcept C134306372 @default.
- W3031497980 hasConcept C154945302 @default.
- W3031497980 hasConcept C158622935 @default.
- W3031497980 hasConcept C2775924081 @default.
- W3031497980 hasConcept C28826006 @default.
- W3031497980 hasConcept C33923547 @default.
- W3031497980 hasConcept C41008148 @default.
- W3031497980 hasConcept C47446073 @default.
- W3031497980 hasConcept C60640748 @default.
- W3031497980 hasConcept C62520636 @default.
- W3031497980 hasConcept C6802819 @default.
- W3031497980 hasConcept C72169020 @default.
- W3031497980 hasConceptScore W3031497980C112972136 @default.
- W3031497980 hasConceptScore W3031497980C118615104 @default.
- W3031497980 hasConceptScore W3031497980C119857082 @default.
- W3031497980 hasConceptScore W3031497980C121332964 @default.
- W3031497980 hasConceptScore W3031497980C134306372 @default.
- W3031497980 hasConceptScore W3031497980C154945302 @default.
- W3031497980 hasConceptScore W3031497980C158622935 @default.
- W3031497980 hasConceptScore W3031497980C2775924081 @default.
- W3031497980 hasConceptScore W3031497980C28826006 @default.
- W3031497980 hasConceptScore W3031497980C33923547 @default.
- W3031497980 hasConceptScore W3031497980C41008148 @default.
- W3031497980 hasConceptScore W3031497980C47446073 @default.
- W3031497980 hasConceptScore W3031497980C60640748 @default.
- W3031497980 hasConceptScore W3031497980C62520636 @default.
- W3031497980 hasConceptScore W3031497980C6802819 @default.
- W3031497980 hasConceptScore W3031497980C72169020 @default.
- W3031497980 hasLocation W30314979801 @default.
- W3031497980 hasOpenAccess W3031497980 @default.
- W3031497980 hasPrimaryLocation W30314979801 @default.
- W3031497980 hasRelatedWork W1963827486 @default.
- W3031497980 hasRelatedWork W2225976077 @default.
- W3031497980 hasRelatedWork W2378841998 @default.
- W3031497980 hasRelatedWork W2491269554 @default.