Matches in SemOpenAlex for { <https://semopenalex.org/work/W3031848290> ?p ?o ?g. }
- W3031848290 endingPage "101308" @default.
- W3031848290 startingPage "101293" @default.
- W3031848290 abstract "In recent years, with the advancements in the Deep Learning realm, it has been easy to create and generate synthetically the face swaps from GANs and other tools, which are very realistic, leaving few traces which are unclassifiable by human eyes. These are known as `DeepFakes' and most of them are anchored in video formats. Such realistic fake videos and images are used to create a ruckus and affect the quality of public discourse on sensitive issues; defaming one's profile, political distress, blackmailing and many more fake cyber terrorisms are envisioned. This work proposes a microscopic-typo comparison of video frames. This temporal-detection pipeline compares very minute visual traces on the faces of real and fake frames using Convolutional Neural Network (CNN) and stores the abnormal features for training. A total of 512 facial landmarks were extracted and compared. Parameters such as eye-blinking lip-synch; eyebrows movement, and position, are few main deciding factors that classify into real or counterfeit visual data. The Recurrent Neural Network (RNN) pipeline learns based on these features-fed inputs and then evaluates the visual data. The model was trained with the network of videos consisting of their real and fake, collected from multiple websites. The proposed algorithm and designed network set a new benchmark for detecting the visual counterfeits and show how this system can achieve competitive results on any fake generated video or image." @default.
- W3031848290 created "2020-06-05" @default.
- W3031848290 creator A5001511958 @default.
- W3031848290 creator A5005365069 @default.
- W3031848290 creator A5018869195 @default.
- W3031848290 creator A5039549706 @default.
- W3031848290 creator A5061785031 @default.
- W3031848290 creator A5086527348 @default.
- W3031848290 date "2020-01-01" @default.
- W3031848290 modified "2023-10-18" @default.
- W3031848290 title "An Exploratory Analysis on Visual Counterfeits Using Conv-LSTM Hybrid Architecture" @default.
- W3031848290 cites W1522734439 @default.
- W3031848290 cites W1923404803 @default.
- W3031848290 cites W1947481528 @default.
- W3031848290 cites W1950136256 @default.
- W3031848290 cites W1974436615 @default.
- W3031848290 cites W2054754893 @default.
- W3031848290 cites W2064675550 @default.
- W3031848290 cites W2108598243 @default.
- W3031848290 cites W2142194269 @default.
- W3031848290 cites W2507009361 @default.
- W3031848290 cites W2511630356 @default.
- W3031848290 cites W2738082853 @default.
- W3031848290 cites W2770534877 @default.
- W3031848290 cites W2811414481 @default.
- W3031848290 cites W2894873912 @default.
- W3031848290 cites W2911424785 @default.
- W3031848290 cites W2912940386 @default.
- W3031848290 cites W2920877282 @default.
- W3031848290 cites W2962770929 @default.
- W3031848290 cites W2962974533 @default.
- W3031848290 cites W2963073614 @default.
- W3031848290 cites W2963091558 @default.
- W3031848290 cites W2963267868 @default.
- W3031848290 cites W2963767194 @default.
- W3031848290 cites W2974808903 @default.
- W3031848290 cites W2982058372 @default.
- W3031848290 cites W2985060393 @default.
- W3031848290 cites W3012000138 @default.
- W3031848290 cites W3012472557 @default.
- W3031848290 cites W4236231454 @default.
- W3031848290 doi "https://doi.org/10.1109/access.2020.2998330" @default.
- W3031848290 hasPublicationYear "2020" @default.
- W3031848290 type Work @default.
- W3031848290 sameAs 3031848290 @default.
- W3031848290 citedByCount "20" @default.
- W3031848290 countsByYear W30318482902020 @default.
- W3031848290 countsByYear W30318482902021 @default.
- W3031848290 countsByYear W30318482902022 @default.
- W3031848290 countsByYear W30318482902023 @default.
- W3031848290 crossrefType "journal-article" @default.
- W3031848290 hasAuthorship W3031848290A5001511958 @default.
- W3031848290 hasAuthorship W3031848290A5005365069 @default.
- W3031848290 hasAuthorship W3031848290A5018869195 @default.
- W3031848290 hasAuthorship W3031848290A5039549706 @default.
- W3031848290 hasAuthorship W3031848290A5061785031 @default.
- W3031848290 hasAuthorship W3031848290A5086527348 @default.
- W3031848290 hasBestOaLocation W30318482901 @default.
- W3031848290 hasConcept C108583219 @default.
- W3031848290 hasConcept C13280743 @default.
- W3031848290 hasConcept C153180895 @default.
- W3031848290 hasConcept C154945302 @default.
- W3031848290 hasConcept C177264268 @default.
- W3031848290 hasConcept C185798385 @default.
- W3031848290 hasConcept C199360897 @default.
- W3031848290 hasConcept C205649164 @default.
- W3031848290 hasConcept C31972630 @default.
- W3031848290 hasConcept C41008148 @default.
- W3031848290 hasConcept C43521106 @default.
- W3031848290 hasConcept C58489278 @default.
- W3031848290 hasConcept C81363708 @default.
- W3031848290 hasConceptScore W3031848290C108583219 @default.
- W3031848290 hasConceptScore W3031848290C13280743 @default.
- W3031848290 hasConceptScore W3031848290C153180895 @default.
- W3031848290 hasConceptScore W3031848290C154945302 @default.
- W3031848290 hasConceptScore W3031848290C177264268 @default.
- W3031848290 hasConceptScore W3031848290C185798385 @default.
- W3031848290 hasConceptScore W3031848290C199360897 @default.
- W3031848290 hasConceptScore W3031848290C205649164 @default.
- W3031848290 hasConceptScore W3031848290C31972630 @default.
- W3031848290 hasConceptScore W3031848290C41008148 @default.
- W3031848290 hasConceptScore W3031848290C43521106 @default.
- W3031848290 hasConceptScore W3031848290C58489278 @default.
- W3031848290 hasConceptScore W3031848290C81363708 @default.
- W3031848290 hasFunder F4320322120 @default.
- W3031848290 hasLocation W30318482901 @default.
- W3031848290 hasLocation W30318482902 @default.
- W3031848290 hasOpenAccess W3031848290 @default.
- W3031848290 hasPrimaryLocation W30318482901 @default.
- W3031848290 hasRelatedWork W2378211422 @default.
- W3031848290 hasRelatedWork W2922305141 @default.
- W3031848290 hasRelatedWork W3029198973 @default.
- W3031848290 hasRelatedWork W3114272811 @default.
- W3031848290 hasRelatedWork W3133861977 @default.
- W3031848290 hasRelatedWork W3167935049 @default.
- W3031848290 hasRelatedWork W3185156046 @default.
- W3031848290 hasRelatedWork W3193565141 @default.
- W3031848290 hasRelatedWork W4226493464 @default.