Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032021129> ?p ?o ?g. }
- W3032021129 endingPage "916" @default.
- W3032021129 startingPage "916" @default.
- W3032021129 abstract "As cyberattacks become more intelligent, it is challenging to detect advanced attacks in a variety of fields including industry, national defense, and healthcare. Traditional intrusion detection systems are no longer enough to detect these advanced attacks with unexpected patterns. Attackers bypass known signatures and pretend to be normal users. Deep learning is an alternative to solving these issues. Deep Learning (DL)-based intrusion detection does not require a lot of attack signatures or the list of normal behaviors to generate detection rules. DL defines intrusion features by itself through training empirical data. We develop a DL-based intrusion model especially focusing on denial of service (DoS) attacks. For the intrusion dataset, we use KDD CUP 1999 dataset (KDD), the most widely used dataset for the evaluation of intrusion detection systems (IDS). KDD consists of four types of attack categories, such as DoS, user to root (U2R), remote to local (R2L), and probing. Numerous KDD studies have been employing machine learning and classifying the dataset into the four categories or into two categories such as attack and benign. Rather than focusing on the broad categories, we focus on various attacks belonging to same category. Unlike other categories of KDD, the DoS category has enough samples for training each attack. In addition to KDD, we use CSE-CIC-IDS2018 which is the most up-to-date IDS dataset. CSE-CIC-IDS2018 consists of more advanced DoS attacks than that of KDD. In this work, we focus on the DoS category of both datasets and develop a DL model for DoS detection. We develop our model based on a Convolutional Neural Network (CNN) and evaluate its performance through comparison with an Recurrent Neural Network (RNN). Furthermore, we suggest the optimal CNN design for the better performance through numerous experiments." @default.
- W3032021129 created "2020-06-05" @default.
- W3032021129 creator A5008062387 @default.
- W3032021129 creator A5014940898 @default.
- W3032021129 creator A5049274095 @default.
- W3032021129 creator A5075548073 @default.
- W3032021129 creator A5091554389 @default.
- W3032021129 date "2020-06-01" @default.
- W3032021129 modified "2023-10-17" @default.
- W3032021129 title "CNN-Based Network Intrusion Detection against Denial-of-Service Attacks" @default.
- W3032021129 cites W1851171594 @default.
- W3032021129 cites W1971318932 @default.
- W3032021129 cites W1983291981 @default.
- W3032021129 cites W2017420094 @default.
- W3032021129 cites W2031163547 @default.
- W3032021129 cites W2066877142 @default.
- W3032021129 cites W2078559757 @default.
- W3032021129 cites W2149002604 @default.
- W3032021129 cites W2156690435 @default.
- W3032021129 cites W2512144135 @default.
- W3032021129 cites W2587051561 @default.
- W3032021129 cites W2600058599 @default.
- W3032021129 cites W2606775912 @default.
- W3032021129 cites W2767203245 @default.
- W3032021129 cites W2885316547 @default.
- W3032021129 cites W2906860912 @default.
- W3032021129 cites W2910197492 @default.
- W3032021129 cites W2919143607 @default.
- W3032021129 cites W2922431468 @default.
- W3032021129 cites W2930411433 @default.
- W3032021129 cites W2933915278 @default.
- W3032021129 cites W2982640876 @default.
- W3032021129 cites W3000367805 @default.
- W3032021129 cites W3153065649 @default.
- W3032021129 cites W4238294603 @default.
- W3032021129 cites W4376849086 @default.
- W3032021129 doi "https://doi.org/10.3390/electronics9060916" @default.
- W3032021129 hasPublicationYear "2020" @default.
- W3032021129 type Work @default.
- W3032021129 sameAs 3032021129 @default.
- W3032021129 citedByCount "142" @default.
- W3032021129 countsByYear W30320211292020 @default.
- W3032021129 countsByYear W30320211292021 @default.
- W3032021129 countsByYear W30320211292022 @default.
- W3032021129 countsByYear W30320211292023 @default.
- W3032021129 crossrefType "journal-article" @default.
- W3032021129 hasAuthorship W3032021129A5008062387 @default.
- W3032021129 hasAuthorship W3032021129A5014940898 @default.
- W3032021129 hasAuthorship W3032021129A5049274095 @default.
- W3032021129 hasAuthorship W3032021129A5075548073 @default.
- W3032021129 hasAuthorship W3032021129A5091554389 @default.
- W3032021129 hasBestOaLocation W30320211291 @default.
- W3032021129 hasConcept C108583219 @default.
- W3032021129 hasConcept C110875604 @default.
- W3032021129 hasConcept C119857082 @default.
- W3032021129 hasConcept C120665830 @default.
- W3032021129 hasConcept C121332964 @default.
- W3032021129 hasConcept C124101348 @default.
- W3032021129 hasConcept C136764020 @default.
- W3032021129 hasConcept C137524506 @default.
- W3032021129 hasConcept C154945302 @default.
- W3032021129 hasConcept C192209626 @default.
- W3032021129 hasConcept C35525427 @default.
- W3032021129 hasConcept C38652104 @default.
- W3032021129 hasConcept C38822068 @default.
- W3032021129 hasConcept C41008148 @default.
- W3032021129 hasConceptScore W3032021129C108583219 @default.
- W3032021129 hasConceptScore W3032021129C110875604 @default.
- W3032021129 hasConceptScore W3032021129C119857082 @default.
- W3032021129 hasConceptScore W3032021129C120665830 @default.
- W3032021129 hasConceptScore W3032021129C121332964 @default.
- W3032021129 hasConceptScore W3032021129C124101348 @default.
- W3032021129 hasConceptScore W3032021129C136764020 @default.
- W3032021129 hasConceptScore W3032021129C137524506 @default.
- W3032021129 hasConceptScore W3032021129C154945302 @default.
- W3032021129 hasConceptScore W3032021129C192209626 @default.
- W3032021129 hasConceptScore W3032021129C35525427 @default.
- W3032021129 hasConceptScore W3032021129C38652104 @default.
- W3032021129 hasConceptScore W3032021129C38822068 @default.
- W3032021129 hasConceptScore W3032021129C41008148 @default.
- W3032021129 hasFunder F4320322120 @default.
- W3032021129 hasIssue "6" @default.
- W3032021129 hasLocation W30320211291 @default.
- W3032021129 hasLocation W30320211292 @default.
- W3032021129 hasLocation W30320211293 @default.
- W3032021129 hasOpenAccess W3032021129 @default.
- W3032021129 hasPrimaryLocation W30320211291 @default.
- W3032021129 hasRelatedWork W2028465155 @default.
- W3032021129 hasRelatedWork W2187401349 @default.
- W3032021129 hasRelatedWork W2366931277 @default.
- W3032021129 hasRelatedWork W2987462849 @default.
- W3032021129 hasRelatedWork W3043172660 @default.
- W3032021129 hasRelatedWork W4223943233 @default.
- W3032021129 hasRelatedWork W4239371143 @default.
- W3032021129 hasRelatedWork W4285157290 @default.
- W3032021129 hasRelatedWork W4312200629 @default.
- W3032021129 hasRelatedWork W4380075502 @default.
- W3032021129 hasVolume "9" @default.