Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032023981> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3032023981 endingPage "139625" @default.
- W3032023981 startingPage "139625" @default.
- W3032023981 abstract "Accurate instantaneous vehicle emissions models are vital for evaluating the impacts of road transport on air pollution at high temporal and spatial resolution. In this study, we apply machine learning techniques to a dataset of 70 diesel vehicles tested in real-world driving conditions to: (i) cluster vehicles with similar emissions performance, and (ii) model instantaneous emissions. The application of dynamic time warping and clustering analysis by NOx emissions resulted in 17 clusters capturing 88% of trips in the dataset. We show that clustering effectively groups vehicles with similar emissions profiles, however no significant correlation between emissions and vehicle characteristics (i.e. engine size, vehicle weight) were found. For each cluster, we evaluate three instantaneous emissions models: a look-up table (LT) approach, a non-linear regression (NLR) model and a neural network multi-layer perceptron (MLP) model. The NLR model provides accurate instantaneous NOx predictions, on par with the MLP: relative errors in prediction of emission factors are below 20% for both models, average fractional biases are −0.01 (s.d. 0.02) and −0.0003 (s.d. 0.04), and average normalised mean squared errors are 0.25 (s.d. 0.14) and 0.29 (s.d. 0.16), for the NLR and MLP models respectively. However, neural networks are better able to deal with vehicles not belonging to a specific cluster. The new models that we present rely on simple inputs of vehicle speed and acceleration, which could be extracted from existing sources including traffic cameras and vehicle tracking devices, and can therefore be deployed immediately to enable fast and accurate prediction of vehicle NOx emissions. The speed and the ease of use of these new models make them an ideal operational tool for policy makers aiming to build emission inventories or evaluate emissions mitigation strategies." @default.
- W3032023981 created "2020-06-05" @default.
- W3032023981 creator A5022531801 @default.
- W3032023981 creator A5026539654 @default.
- W3032023981 creator A5028413737 @default.
- W3032023981 creator A5081646502 @default.
- W3032023981 date "2020-10-01" @default.
- W3032023981 modified "2023-10-16" @default.
- W3032023981 title "Modelling of instantaneous emissions from diesel vehicles with a special focus on NOx: Insights from machine learning techniques" @default.
- W3032023981 cites W1561324350 @default.
- W3032023981 cites W1987457130 @default.
- W3032023981 cites W1993145896 @default.
- W3032023981 cites W2005174214 @default.
- W3032023981 cites W2015150103 @default.
- W3032023981 cites W2045492180 @default.
- W3032023981 cites W2053451460 @default.
- W3032023981 cites W2060462691 @default.
- W3032023981 cites W2061672385 @default.
- W3032023981 cites W2083620785 @default.
- W3032023981 cites W2085115223 @default.
- W3032023981 cites W2100072843 @default.
- W3032023981 cites W2125079315 @default.
- W3032023981 cites W2131931949 @default.
- W3032023981 cites W2132748629 @default.
- W3032023981 cites W2144994235 @default.
- W3032023981 cites W2472840812 @default.
- W3032023981 cites W2518812231 @default.
- W3032023981 cites W2596404665 @default.
- W3032023981 doi "https://doi.org/10.1016/j.scitotenv.2020.139625" @default.
- W3032023981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32783820" @default.
- W3032023981 hasPublicationYear "2020" @default.
- W3032023981 type Work @default.
- W3032023981 sameAs 3032023981 @default.
- W3032023981 citedByCount "35" @default.
- W3032023981 countsByYear W30320239812021 @default.
- W3032023981 countsByYear W30320239812022 @default.
- W3032023981 countsByYear W30320239812023 @default.
- W3032023981 crossrefType "journal-article" @default.
- W3032023981 hasAuthorship W3032023981A5022531801 @default.
- W3032023981 hasAuthorship W3032023981A5026539654 @default.
- W3032023981 hasAuthorship W3032023981A5028413737 @default.
- W3032023981 hasAuthorship W3032023981A5081646502 @default.
- W3032023981 hasBestOaLocation W30320239812 @default.
- W3032023981 hasConcept C105923489 @default.
- W3032023981 hasConcept C127413603 @default.
- W3032023981 hasConcept C138171918 @default.
- W3032023981 hasConcept C154945302 @default.
- W3032023981 hasConcept C171146098 @default.
- W3032023981 hasConcept C178790620 @default.
- W3032023981 hasConcept C185592680 @default.
- W3032023981 hasConcept C203032635 @default.
- W3032023981 hasConcept C39432304 @default.
- W3032023981 hasConcept C41008148 @default.
- W3032023981 hasConcept C50644808 @default.
- W3032023981 hasConcept C60908668 @default.
- W3032023981 hasConcept C73555534 @default.
- W3032023981 hasConcept C88516994 @default.
- W3032023981 hasConceptScore W3032023981C105923489 @default.
- W3032023981 hasConceptScore W3032023981C127413603 @default.
- W3032023981 hasConceptScore W3032023981C138171918 @default.
- W3032023981 hasConceptScore W3032023981C154945302 @default.
- W3032023981 hasConceptScore W3032023981C171146098 @default.
- W3032023981 hasConceptScore W3032023981C178790620 @default.
- W3032023981 hasConceptScore W3032023981C185592680 @default.
- W3032023981 hasConceptScore W3032023981C203032635 @default.
- W3032023981 hasConceptScore W3032023981C39432304 @default.
- W3032023981 hasConceptScore W3032023981C41008148 @default.
- W3032023981 hasConceptScore W3032023981C50644808 @default.
- W3032023981 hasConceptScore W3032023981C60908668 @default.
- W3032023981 hasConceptScore W3032023981C73555534 @default.
- W3032023981 hasConceptScore W3032023981C88516994 @default.
- W3032023981 hasFunder F4320335087 @default.
- W3032023981 hasLocation W30320239811 @default.
- W3032023981 hasLocation W30320239812 @default.
- W3032023981 hasLocation W30320239813 @default.
- W3032023981 hasOpenAccess W3032023981 @default.
- W3032023981 hasPrimaryLocation W30320239811 @default.
- W3032023981 hasRelatedWork W2030799363 @default.
- W3032023981 hasRelatedWork W2040439981 @default.
- W3032023981 hasRelatedWork W2288425735 @default.
- W3032023981 hasRelatedWork W2341338763 @default.
- W3032023981 hasRelatedWork W2349923317 @default.
- W3032023981 hasRelatedWork W2894081631 @default.
- W3032023981 hasRelatedWork W2978114332 @default.
- W3032023981 hasRelatedWork W2986063033 @default.
- W3032023981 hasRelatedWork W3172737693 @default.
- W3032023981 hasRelatedWork W3205070264 @default.
- W3032023981 hasVolume "737" @default.
- W3032023981 isParatext "false" @default.
- W3032023981 isRetracted "false" @default.
- W3032023981 magId "3032023981" @default.
- W3032023981 workType "article" @default.