Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032032710> ?p ?o ?g. }
- W3032032710 endingPage "112277" @default.
- W3032032710 startingPage "112266" @default.
- W3032032710 abstract "Seismic full waveform inversion is a common technique that is used in the investigation of subsurface geology. Its classic implementation involves forward modeling of seismic wavefield based on a certain type of wave equation, which reflects the physics nature of subsurface seismic wavefield propagation. However, obtaining a good inversion result using traditional seismic waveform inversion methods usually comes with a high computational cost. Recently, with the emerging popularity of deep learning techniques in various computer vision tasks, deep neural network (DNN) has demonstrated an impressive ability in dealing with complex nonlinear problems, including seismic velocity inversion. Now, extensive efforts have been made in developing a DNN architecture to tackle the problem of seismic velocity inversion, and promising results have been achieved. However, due to the dependence of a labeled dataset, i.e., the barely accessible true velocity model corresponding to real seismic data, the current supervised deep learning inversion framework may suffer from limitations on generalization. One possible solution to mitigate this issue is to impose the governing physics into this kind of purely data-driven method. Thus, following the procedures of traditional seismic full waveform inversion, we propose a seismic waveform inversion network, namely SWINet, based on wave-equation-based forward modeling network cells. By treating the single-shot observation data and its corresponding shot position as training data pairs, the inverted velocity model can be obtained as the trainable network parameters. Moreover, since the proposed seismic waveform inversion method is performed in a neural-network way, its implementation and inversion effect could benefit from some built-in tools in Pytorch, such as automatic differentiation, Adam optimizer and mini-batch strategy, etc. Numerical examples indicate that the SWINet method may possess great potential in resulting a good velocity inversion effect with relatively fast convergence and lower computation cost." @default.
- W3032032710 created "2020-06-05" @default.
- W3032032710 creator A5006793709 @default.
- W3032032710 creator A5019972279 @default.
- W3032032710 creator A5022186657 @default.
- W3032032710 creator A5062504577 @default.
- W3032032710 creator A5077933989 @default.
- W3032032710 date "2020-01-01" @default.
- W3032032710 modified "2023-10-18" @default.
- W3032032710 title "A Physics-Based Neural-Network Way to Perform Seismic Full Waveform Inversion" @default.
- W3032032710 cites W2007058750 @default.
- W3032032710 cites W2009552164 @default.
- W3032032710 cites W2019083138 @default.
- W3032032710 cites W2109244277 @default.
- W3032032710 cites W2117130368 @default.
- W3032032710 cites W2120704348 @default.
- W3032032710 cites W2125916088 @default.
- W3032032710 cites W2150240527 @default.
- W3032032710 cites W2151901634 @default.
- W3032032710 cites W2302083309 @default.
- W3032032710 cites W2313652623 @default.
- W3032032710 cites W2320620757 @default.
- W3032032710 cites W2518822842 @default.
- W3032032710 cites W2520245483 @default.
- W3032032710 cites W2592517375 @default.
- W3032032710 cites W2766854032 @default.
- W3032032710 cites W2776585113 @default.
- W3032032710 cites W2781413646 @default.
- W3032032710 cites W2794284562 @default.
- W3032032710 cites W2794417179 @default.
- W3032032710 cites W2810812775 @default.
- W3032032710 cites W2884001105 @default.
- W3032032710 cites W2886098498 @default.
- W3032032710 cites W2889915257 @default.
- W3032032710 cites W2890172403 @default.
- W3032032710 cites W2890946821 @default.
- W3032032710 cites W2892108217 @default.
- W3032032710 cites W2903721943 @default.
- W3032032710 cites W2904005001 @default.
- W3032032710 cites W2912913790 @default.
- W3032032710 cites W2915004230 @default.
- W3032032710 cites W2919115771 @default.
- W3032032710 cites W2947853264 @default.
- W3032032710 cites W2953182346 @default.
- W3032032710 cites W2966904310 @default.
- W3032032710 cites W2967865461 @default.
- W3032032710 cites W2983807332 @default.
- W3032032710 cites W2987357275 @default.
- W3032032710 cites W3104564825 @default.
- W3032032710 cites W4244300305 @default.
- W3032032710 doi "https://doi.org/10.1109/access.2020.2997921" @default.
- W3032032710 hasPublicationYear "2020" @default.
- W3032032710 type Work @default.
- W3032032710 sameAs 3032032710 @default.
- W3032032710 citedByCount "36" @default.
- W3032032710 countsByYear W30320327102021 @default.
- W3032032710 countsByYear W30320327102022 @default.
- W3032032710 countsByYear W30320327102023 @default.
- W3032032710 crossrefType "journal-article" @default.
- W3032032710 hasAuthorship W3032032710A5006793709 @default.
- W3032032710 hasAuthorship W3032032710A5019972279 @default.
- W3032032710 hasAuthorship W3032032710A5022186657 @default.
- W3032032710 hasAuthorship W3032032710A5062504577 @default.
- W3032032710 hasAuthorship W3032032710A5077933989 @default.
- W3032032710 hasBestOaLocation W30320327101 @default.
- W3032032710 hasConcept C108583219 @default.
- W3032032710 hasConcept C11413529 @default.
- W3032032710 hasConcept C127313418 @default.
- W3032032710 hasConcept C134306372 @default.
- W3032032710 hasConcept C135252773 @default.
- W3032032710 hasConcept C154945302 @default.
- W3032032710 hasConcept C159737794 @default.
- W3032032710 hasConcept C165205528 @default.
- W3032032710 hasConcept C1893757 @default.
- W3032032710 hasConcept C197424946 @default.
- W3032032710 hasConcept C2524010 @default.
- W3032032710 hasConcept C33923547 @default.
- W3032032710 hasConcept C39267094 @default.
- W3032032710 hasConcept C41008148 @default.
- W3032032710 hasConcept C50644808 @default.
- W3032032710 hasConcept C554190296 @default.
- W3032032710 hasConcept C76155785 @default.
- W3032032710 hasConcept C77928131 @default.
- W3032032710 hasConcept C78542244 @default.
- W3032032710 hasConcept C8058405 @default.
- W3032032710 hasConceptScore W3032032710C108583219 @default.
- W3032032710 hasConceptScore W3032032710C11413529 @default.
- W3032032710 hasConceptScore W3032032710C127313418 @default.
- W3032032710 hasConceptScore W3032032710C134306372 @default.
- W3032032710 hasConceptScore W3032032710C135252773 @default.
- W3032032710 hasConceptScore W3032032710C154945302 @default.
- W3032032710 hasConceptScore W3032032710C159737794 @default.
- W3032032710 hasConceptScore W3032032710C165205528 @default.
- W3032032710 hasConceptScore W3032032710C1893757 @default.
- W3032032710 hasConceptScore W3032032710C197424946 @default.
- W3032032710 hasConceptScore W3032032710C2524010 @default.
- W3032032710 hasConceptScore W3032032710C33923547 @default.
- W3032032710 hasConceptScore W3032032710C39267094 @default.