Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032117568> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3032117568 abstract "PreviousNext No AccessRadiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine, 4th EditionChapter 17: PET Radiopharmaceutical Manufacturing and Distributionhttps://doi.org/10.21019/9781582122830.ch17Authors:Ashley Mishoe, Steven ZiglerAshley MishoeSearch for more papers by this author, Steven ZiglerSearch for more papers by this author SectionsAboutFull TextReferences ToolsAdd to favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinkedInRedditEmail Abstract: The short half-lives of positron emission tomography (PET) radionuclides place obvious limitations on the manufacturing and dispensing of PET radiopharmaceuticals. Radionuclide production, chemical synthesis, and quality control (QC) methods must be rapid and reliable. The same requirements apply to the distribution of PET radiopharmaceuticals from their point of manufacture to the patient care setting. This chapter discusses the impact of the short half-lives on the commercial supply of PET radiopharmaceuticals and the roles of manufacturing and distribution within these dynamic fields of nuclear medicine and nuclear pharmacy. REFERENCES1. USP General Chapter <1823> Positron Emission Tomography Drugs—Information, United States Pharmacopeial Convention, 2017. Google Scholar, 2. Benchmark Report: PET Imaging. IMV Medical Information Division, Inc. 2015. https://docplayer.net/24245674-Information-for-the-decisions-ahead-pet-imaging-2015.html. Accessed October 25, 2019. Google Scholar, 3. Nutt R. The history of positron emission tomography. Mol Imag Biol. 2002;4(1):11–26. Crossref, Medline, Google Scholar, 4. Brownell GL. A history of positron imaging. http://www.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/Brownell1999_historyPET.pdf. Accessed November 14, 2019. Google Scholar, 5. Rich DA. A brief history of positron emission tomography. JNuclMed Technol. 1997;25(1):4–11. Google Scholar, 6. Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning from physiology to cutting-edge technology. Neurology. 2013;80(10):952–956. Crossref, Medline, Google Scholar, 7. Jones T. Historical development of functional in vivo studies using positron-emitting tracers. In: Bailey DL, Townsend DW, Valk PE, et al. Positron Emission Tomography: Basic Science and Clinical Practice. London, United Kingdom: Springer-Verlag; 2002:3–40. Google Scholar, 8. ACNP/SNM Task Force on Clinical PET. Positron emission tomography: clinical status in the United States in 1987. J Nucl Med. 1988;29(6):1136–1143. Medline, Google Scholar, 9. Wagner HN. Clinical PET: its time has come. J Nucl Med. 1991;32(4):561–564. Medline, Google Scholar, 10. Alagona P, Hart DT, Eikman EA. Regional distribution of 2-deoxy- 2[18F]-fluoro-D-glucose for metabolic imaging using positron emission tomography. Int J Card Imaging, 1994;10(2):137–143. Crossref, Medline, Google Scholar, 11. Boothe TE, Mcleod TF, Plitnikas M, et al.. Commercial and PET radioisotope manufacturing with a medical cyclotron. Nucl Inst Meth Phys Res. B. 1993;79(1–4):926–928. Crossref, Google Scholar, 12. Emran AM. Concept and utilization of a regional cyclotron center. Nucl Inst Meth Phys Res. B. 1993;79(1–4):916–917. Crossref, Google Scholar, 13. Callahan RJ. The role of commercial nuclear pharmacy in the future practice of nuclear medicine. Semin Nucl Med. 1996;26(2):85–90. Crossref, Medline, Google Scholar, 14. Syncor and CTI to form PET joint venture. Diagnostic Imaging. May 22, 1996. https://www.diagnosticimaging.com/articles/syncor-and-cti-form-pet-joint-venture. Accessed November 14, 2019. Google Scholar, 15. Syncor exits PET joint venture after large loss in first year. Diagnostic Imaging. April 2, 1997. https://www.diagnosticimaging.com/articles/syncor-exits-pet-joint-venture-after-large-loss-first-year?qt-resource_topics_rightrail=0. Accessed November 14, 2019. Google Scholar, 16. Food and Drug Administration. Positron emission tomography (PET) drugs: proposed CGMP rule and draft guidance: questions and answers. www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/ucm085803.htm. Accessed November 8, 2017. Google Scholar, 17. Ikotun O, Clarke B, Sunderland J. A snapshot of United States PET cyclotron and radiopharmaceutical production operations and locations. J Nucl Med. 2012;53(suppl 1):1085. Google Scholar, 18. Food and Drug Administration. U.S. FDA orange book: approved drug products with therapeutic equivalence evaluations. https://www.fda.gov/drugs/drug-approvals-and-databases/approved-drug-products-therapeutic-equivalence-evaluations-orange-book. Accessed May 2019. Google Scholar, 19. Yang L. FDA Updates: Post <212> Deadline. Presented at: SNM Midwinter Meeting. January 26–29, 2012; Orlando, FL. Google Scholar, 20. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance: PET Drugs—Current Good Manufacturing Practice (CGMP) (Small Entity Compliance Guide). https://www.fda.gov/media/81038/download. Accessed November 14, 2019. Google Scholar, 21. Current good manufacturing practice for positron emission tomography drugs: final rule. Fed Regist. 2009;74(236):65431–65436. Google Scholar, 22. USP General Chapter <1821> Radioactivity — Theory and Practice, United States Pharmacopeial Convention, 2017. Google Scholar, 23. Yang L. Drug development overview FDA: basic research to clinical use. Presented at: SNMMI Annual Meeting. June 9–13, 2012; Miami Beach, FL. Google Scholar, 24. Hoffman JM, Gambhir SS, Kelloff GJ. Regulatory and reimbursement challenges for molecular imaging. Radiology. 2007;245(3):645–660. Crossref, Medline, Google Scholar, 25. Zimmerman RG. Industrial constraints in the selection of radionuclides and the development of new radiopharmaceuticals. World J Nucl Med. 2008;7(2):126–134. Google Scholar, 26. Zimmerman RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40(2):155–166. Crossref, Medline, Google Scholar, 27. Nunn AD. The cost of developing imaging agents for routine clinical use. Invest Radiol. 2006;41(3):206–212. Crossref, Medline, Google Scholar, 28. Nunn AD. From clinical trials to prescriptions. J Nucl Med. 2006;47(12):36N-37N. Google Scholar, 29. Agdeppa ED, Spilker ME. A review of imaging agent development. AAPS J. 2009;11(2):286–299. Crossref, Medline, Google Scholar, 30. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance: PET Drug Applications — Content and Format for NDAs and ANDAs. https://www.fda.gov/media/72271/download. Accessed November 14, 2019. Google Scholar, 31. New Drug Application 022494, sponsored by the National Cancer Institute, Rockville, MD. Approved January 26, 2011. Google Scholar, 32. FDA approves 18F-Florbetapir PET agent. J Nucl Med. 2012;53(6):15N. Google Scholar, 33. Benedum TE. Technology transfer to multiple facilities: pitfalls and best practices. Presented at: SNMMI Annual Meeting. June 10, 2017; Denver, CO. Google Scholar, 34. Zigler S, Torres S. Technical support functions in a commercial PET environment: the challenge of a nationwide network. Nucl Inst Meth Phys Res. B. 2007;261(1):736–738. Crossref, Google Scholar, 35. Nazerias M. Reporting changes to an approved NDA or ANDA. Presented at: SNMMI Annual Meeting. June 6–10, 2015; Baltimore, MD. Google Scholar, 36. Vavere A, Zigler S. Co-organizers, best chemistry practices to support the development of PET drugs, categorical session. Presented at: SNMMI Annual Meeting. June 10, 2017; Denver, CO. Google Scholar, 37. Purdue University. Department of Pharmacy Practice Nuclear Pharmacy Programs. https://nuclear.pharmacy.purdue.edu. Accessed November 14, 2019. Google Scholar, 38. Nuclear Education Online. Homepage. www.nuclearonline.org. Accessed November 14, 2019. Google Scholar, 39. Schwarz SW. SNMMI leadership update: quality systems personnel training program for radiopharmaceutical manufacturing. J Nucl Med. 2016;57(11):22N. Medline, Google Scholar, 40. New Drug Application 208547, sponsored by Advanced Accelerator Applications. Approved June 1, 2016. Marketed under the tradename NETSPOT®. Google Scholar, 41. Keppler JS, Thornberg CF, Conti PS. Regulation of positron emission tomography: a case study. AJR Am J Roentgenol. 1998;171(5): 1187–1192. Crossref, Medline, Google Scholar, 42. Schwarz SW, Dick D, VanBrocklin HF, Hoffman JM. Regulatory requirements for PET drug production. J Nucl Med. 2014;55(7): 1132–1137. Crossref, Medline, Google Scholar, 43. Hamowy R. Government and Public Health in America. Northampton, MA: Edward Elgar; 2007:231–232. Crossref, Google Scholar, 44. Food and Drug Administration Modernization Act of 1997, Section 121, Positron emission tomography. Public Law No. 105–115. Google Scholar, 45. Kotz D. Congress passes FDA reform act: nuclear medicine community stands to gain. J Nucl Med. 1998;39(1):15N-16N, 18N. Google Scholar, 46. Division of Drug Labeled Compliance, Center for Drugs and Biologics, Food and Drug Administration. Nuclear pharmacy guideline criteria for determining when to register as a drug establishment. https://www.fda.gov/media/71007/download. Accessed November 14, 2019. Google Scholar, 47. Coleman RE, Robbins MS, Siegel BA. The future of positron emission tomography in clinical medicine and the impact of drug regulation. Semin Nucl Med. 1992;22(3):193–201. Crossref, Medline, Google Scholar, 48. D’Agincourt L. Lack of Reimbursement Impedes PET’s Growth. Diagnostic Imaging. UBM Medica, LLC, February 1992. Google Scholar, 49. Kotz D. FDA Involvement in PET: Help or Hindrance? J Nucl Med. 1997;38:9N-11N, 19N. Google Scholar, 50. Connell EJ. U.S. Senator Champions PET. J Nucl Med. 1999;40(3):20N. Medline, Google Scholar, 51. S Rep No. 105–43 (1997). Google Scholar, 52. HR Rep No. 105–399 (1997). Google Scholar, 53. Keppler JS. Federal regulations and reimbursement for PET. J Nucl Med Technol. 2001;29(4):173–179. Medline, Google Scholar, 54. Coleman RE, Tesar R, Phelps ME. HCFA and expanded coverage of PET – commentary, J Nucl Med. 2001;42:11N-12N. Medline, Google Scholar, 55. Hillner BE, Liu D, Coleman RE, et al.. The National Oncologic PET Registry (NOPR): design and analysis plan. J Nucl Med. 2007;48(11): 1901–1908. Crossref, Medline, Google Scholar, 56. Centers for Medicare and Medicaid Services. Decision Memo for Positron Emission Tomography (NaF-18) to Identify Bone Metastasis of Cancer (CAG-00065R2). https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=279. Accessed November 14, 2019. Google Scholar, 57. National Oncologic PET Registry. NOPR update: closure of NOPR (NaF-PET) on December 14, 2017. https://www.acrin.org/NOPRPETREGISTRYARCHIVE.aspx. Accessed May 2019. Google Scholar, 58. Centers for Medicare and Medicaid Services. Decision memo for beta amyloid positron emission tomography in dementia and neurodegenerative disease (CAG-00431N). https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=265. Accessed November 14, 2019. Google Scholar, 59. Revocation of certain guidance documents on positron emission tomography drug products. Fed Regist. 1997;62(244):66636. Google Scholar, 60. Revocation of regulation on positron emission tomography drug products. Fed Regist. 1997;62(244):66522. Medline, Google Scholar, 61. Positron emission tomography drug products: safety and effectiveness of certain PET drugs for specific indications. Fed Regist. 2000;65(48): 12999–13010. Google Scholar, 62. Draft guidance for industry on the content and format of new drug applications and abbreviated new drug applications for certain positron emission tomography drug products; availability. Fed Regist. 2000;65(48):13010–13012. Google Scholar, 63. Current good manufacturing practice for positron emission tomography drugs. Fed Regist. 2005;70(181):55038–55062. Google Scholar, 64. Current good manufacturing practice for positron emission tomography drugs. Fed Regist. 2009;74(236):65409–65436. Medline, Google Scholar, 65. Positron emission tomography; notice of public meeting; request for comments. Fed Regist. 2011;76(23):6144–6146. Google Scholar, 66. New Drug Application 20–306, sponsored by Downstate Clinical PET Center, Peoria, IL. Approved August 19, 1994. Google Scholar, 67. Lamb JF. Managing the obstacles in the path to regulatory approval of PET. In: Emran AM, ed. Chemists’ Views of Imaging Centers. Boston, MA: Springer; 1995:117–122. Crossref, Google Scholar, 68. Zigler SS. The regulatory process: the institute for clinical PET’s experience. In: Emran AM, ed. Chemists’ Views of Imaging Centers. Boston, MA: Springer; 1995:105–112. Crossref, Google Scholar, 69. Institute for Clinical PET, Mission statement circa 1994. Google Scholar, 70. Coleman RE. NDA/ANDA method of PET radiotracer regulation: a trial that has failed. In: FDA Public Hearing, Regulatory Approach to Positron Emission Tomographic (PET) Radiopharmaceuticals. March 5, 1993; Rockville, MD. Google Scholar, 71. Institute for Clinical PET. Type II Drug Master File 9057 for Fludeoxyglucose F 18 Injection, September 14, 1992. Google Scholar, 72. Coleman RE. Clinical PET: a technology on the brink. J Nucl Med. 1993;34(12):2269–2271. Medline, Google Scholar, 73. Harapanhalli RS. Food and Drug Administration requirements for testing and approval of new radiopharmaceuticals. Semin Nucl Med. 2010;40(5):364–384. Crossref, Medline, Google Scholar, 74. Hung JC. Bringing new PET drugs to clinical practice—a regulatory perspective. Theranostics. 2013;3(11):885–893. Crossref, Medline, Google Scholar, 75. Amartey JK. Ge-68/Ga-68 Generators - FDA Perspective. Presented at: SNMMI Annual Meeting. June 6–10, 2015; Baltimore, MD. Google Scholar, 76. Amartey JK. FDA Update: 68Ge/68Ga Generators and 68Ga radiolabeled Approved Kit. Presented at: SNMMI Annual Meeting. June 11–15, 2016; San Diego, CA. Google Scholar, 77. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance: media fills for validation of aseptic preparations for positron emission tomography (PET) drugs. https://www.fda.gov/media/81974/download. Accessed November 14, 2019. Google Scholar, 78. U.S. FDA. Guidance: PET Drugs—Current Good Manufacturing Practice (CGMP), December 2009. Google Scholar, 79. Food and Drug Administration. Compliance program guidance manual: positron emission tomography (PET) CGMP drug process and pre-approval inspections/investigations. 7356.002P, September 11, 2015. Google Scholar, 80. Ghosh, K. PET Drug Inspections and Compliance Update. Presented at: SNMMI Annual Meeting. June 11–15, 2016; San Diego, CA. Google Scholar, 81. Carey B. Studies halted at brain lab over impure injections. New York Times. July 16, 2010. Google Scholar, 82. Pharmacopeial forum (PF). www.uspnf.com/pharmacopeial-forum. Accessed May 2019. Google Scholar, 83. Hung JC, Schwarz SW, Zigler SS, Ravichandran R. Revision of USP General Chapter Radiopharmaceuticals for Positron Emission Tomography—Compounding <1823>. Pharm Forum. 2011;37:2–8. Google Scholar, 84. See: Comment 24. Current good manufacturing practice for positron emission tomography drugs. Fed Regist. 2009;74(236): 65416. Google Scholar, 85. See: Section 212.5(b). Current good manufacturing practice for positron emission tomography drugs. Fed Regist. 2009;74(236):65433. Google Scholar, 86. See: Comment 25. Current good manufacturing practice for positron emission tomography drugs. Fed Regist. 2009;74(236):65416. Google Scholar, 87. United States Pharmacopeia, 15th Revision, December 15, 1955. Google Scholar, 88. Ponto JA, Schwarz SW, Lewis J, et al.. Revision of General Chapter Radioactivity <821>. Pharm Forum Online, 2012;38(4):Jul–Aug. Google Scholar, 89. United States Pharmacopeia, Fourth Supplement to the 19th Revision, May 1, 1978. Google Scholar, 90. United States Pharmacopeia, 22nd Revision, January 1, 1990. Google Scholar, 91. United States Pharmacopeia, Second Supplement to the 37th Revision, June 1, 2014. Google Scholar, 92. Schwarz S, Norenberg J, Berridge M, et al.. The future of USP monographs for PET drugs. J Nucl Med. 2013;54(3):472–475. Crossref, Medline, Google Scholar, 93. United States Pharmacopeia. Standards for radioactive articles. www.usp.org/chemical-medicines/radioactive-articles. Accessed December 2017. Google Scholar, 94. United States Pharmacopeia. Pharm Forum. 2017:43(3). Google Scholar, 95. Wikipedia. New England compounding center meningitis outbreak. https://en.wikipedia.org/wiki/New_England_Compounding_Center_meningitis_outbreak. Accessed May 2019. Google Scholar, 96. SNMMI COR submits recommendations, white paper on compounded sterile radiopharmaceuticals to USP. J Nucl Med. 2017;58(1):16N-17N. Google Scholar, 97. USP to establish new general chapter on compounding. J Nucl Med. 2017;58(8):15N. Google Scholar, 98. ANSI/ISO/ASQ Q9000 Series: Quality Management Standards, ASQ Quality Press, Milwaukee, 2008. Google Scholar, 99. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonised tripartite guideline: pharmaceutical quality system Q10. https://www.pmda.go.jp/files/000156592.pdf. Accessed November 14, 2019. Google Scholar, 100. Guidance for industry on quality systems approach to pharmaceutical current good manufacturing practice regulations. Fed Regist. 2006;71(190):57980–57981. Google Scholar, 101. Uratani B. PET Drug Inspection. Presented at: SNMMI Annual Meeting. June 9–13, 2012; Miami Beach, FL. Google Scholar, 102. Zigler S, Breslow K, Nazerias M. A quality system for PET: an industry perspective. Nucl Inst Meth Phys Res B. 2005;241(1–4): 645–648. Crossref, Google Scholar, 103. U.S. Food and Drug Administration. Contract manufacturing arrangements for drugs: quality agreements: guidance for industry. https://www.fda.gov/media/86193/download. Google Scholar, PreviousNext Session Activity Recently Viewed Chapter 17: PET Radiopharmaceutical Manufacturing and Distribution Ashley Mishoe and Steven Zigler Recently Searched No search history FiguresReferencesRelatedDetails Published: 26 May 2020ISBN: 1-58212-283-0eISBN: 1-58212-363-2 Copyright & Permissions© 2020 by the American Pharmacists Association. All rights reserved.© 2020 by the American Pharmacists Association. All rights reserved Publisher American Pharmacists Association HistoryPublished: 26 May 2020 Citation Information Ashley Mishoe and Steven Zigler, (2020), Chapter 17: PET Radiopharmaceutical Manufacturing and Distribution, Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine, 4th Edition https://doi.org/10.21019/9781582122830.ch17 Loading ..." @default.
- W3032117568 created "2020-06-05" @default.
- W3032117568 creator A5024803953 @default.
- W3032117568 creator A5064932486 @default.
- W3032117568 date "2020-03-01" @default.
- W3032117568 modified "2023-09-25" @default.
- W3032117568 title "Chapter 17: PET Radiopharmaceutical Manufacturing and Distribution" @default.
- W3032117568 cites W1767565703 @default.
- W3032117568 cites W1966537163 @default.
- W3032117568 cites W1971617868 @default.
- W3032117568 cites W1975468758 @default.
- W3032117568 cites W1993119767 @default.
- W3032117568 cites W2023323428 @default.
- W3032117568 cites W2024937717 @default.
- W3032117568 cites W2031592344 @default.
- W3032117568 cites W2033892527 @default.
- W3032117568 cites W2037087194 @default.
- W3032117568 cites W2058707574 @default.
- W3032117568 cites W2062344257 @default.
- W3032117568 cites W2067769615 @default.
- W3032117568 cites W2081400771 @default.
- W3032117568 cites W2092983696 @default.
- W3032117568 cites W2123436335 @default.
- W3032117568 cites W2135676075 @default.
- W3032117568 cites W2140880028 @default.
- W3032117568 cites W2145412350 @default.
- W3032117568 cites W2203143764 @default.
- W3032117568 cites W2322512335 @default.
- W3032117568 cites W45176052 @default.
- W3032117568 doi "https://doi.org/10.21019/9781582122830.ch17" @default.
- W3032117568 hasPublicationYear "2020" @default.
- W3032117568 type Work @default.
- W3032117568 sameAs 3032117568 @default.
- W3032117568 citedByCount "0" @default.
- W3032117568 crossrefType "book-chapter" @default.
- W3032117568 hasAuthorship W3032117568A5024803953 @default.
- W3032117568 hasAuthorship W3032117568A5064932486 @default.
- W3032117568 hasConcept C110121322 @default.
- W3032117568 hasConcept C134306372 @default.
- W3032117568 hasConcept C2989005 @default.
- W3032117568 hasConcept C33923547 @default.
- W3032117568 hasConcept C71924100 @default.
- W3032117568 hasConceptScore W3032117568C110121322 @default.
- W3032117568 hasConceptScore W3032117568C134306372 @default.
- W3032117568 hasConceptScore W3032117568C2989005 @default.
- W3032117568 hasConceptScore W3032117568C33923547 @default.
- W3032117568 hasConceptScore W3032117568C71924100 @default.
- W3032117568 hasLocation W30321175681 @default.
- W3032117568 hasOpenAccess W3032117568 @default.
- W3032117568 hasPrimaryLocation W30321175681 @default.
- W3032117568 hasRelatedWork W1489783725 @default.
- W3032117568 hasRelatedWork W1506200166 @default.
- W3032117568 hasRelatedWork W2039318446 @default.
- W3032117568 hasRelatedWork W2048182022 @default.
- W3032117568 hasRelatedWork W2080531066 @default.
- W3032117568 hasRelatedWork W2604872355 @default.
- W3032117568 hasRelatedWork W2748952813 @default.
- W3032117568 hasRelatedWork W2899084033 @default.
- W3032117568 hasRelatedWork W3032375762 @default.
- W3032117568 hasRelatedWork W3108674512 @default.
- W3032117568 isParatext "false" @default.
- W3032117568 isRetracted "false" @default.
- W3032117568 magId "3032117568" @default.
- W3032117568 workType "book-chapter" @default.