Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032187331> ?p ?o ?g. }
- W3032187331 endingPage "1742" @default.
- W3032187331 startingPage "1742" @default.
- W3032187331 abstract "Desertification control and scientific evaluation of desert ecosystem sustainability are important issues for countries along the Silk Road Economic Belt. Fractional vegetation coverage (FVC) is used as a quantitative indicator to describe the vegetation coverage of desert ecosystems. Although satellite remote sensing technology has been widely used to retrieve FVC at the regional and global scale, the authenticity evaluation of the inversion results has been flawed. To gain insight into the composition, structure and changes of desert vegetation, it is important to assess the accuracy of FVC and explore the relationship between FVC and meteorological factors. Therefore, we adopted unmanned aerial vehicle remote sensing (UAVRS) technology to verify the inversion results and analyse the practicability of MODIS-NDVI (where NDVI = normalized difference vegetation index) products in desert areas. To provide a new method for the estimation of vegetation coverage in the natural state, the relationships between vegetation coverage and four meteorological factors, namely, land surface temperature, temperature, precipitation and evaporation were analysed. The results showed that using the original MODIS-NDVI data product with a spatial resolution of 250 m to invert vegetation coverage is practical in desert areas (coefficient of determination (R2) = 0.83, root mean square error (RMSE) = 0.052, normalized root mean square error (NRMSE) = 42.94%, mean absolute error (MAE) = 0.007) but underestimates vegetation coverage in the study area. MODIS-NDVI data products are different from the real NDVI in the study area. Correcting MODIS-NDVI data products can effectively improve the accuracy of the inversion. When extracting vegetation coverage in this area, the scale has little effect on the results. There is a significant correlation between precipitation, evaporation and FVC in the area, but the interaction of temperature and land surface temperature with precipitation and evaporation also has a considerable impact on FVC, and evaporation has a substantial impact on FVC values inverted from MODIS-NDVI data (FVCM), When exploring the relationship between vegetation coverage and meteorological elements, if vegetation coverage is retrieved from MODIS-NDVI data products or MODIS-NDVI data, when considering temperature and precipitation, the effect of evaporation should also be considered. In addition, meteorological factors can be used to predict FVC (R2 = 0.7364, RMSE = 0.0623), which provides a new method for estimating FVC in areas with less manual intervention." @default.
- W3032187331 created "2020-06-05" @default.
- W3032187331 creator A5017225918 @default.
- W3032187331 creator A5061233973 @default.
- W3032187331 creator A5075043958 @default.
- W3032187331 date "2020-05-28" @default.
- W3032187331 modified "2023-10-17" @default.
- W3032187331 title "Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology" @default.
- W3032187331 cites W1967945274 @default.
- W3032187331 cites W1975634132 @default.
- W3032187331 cites W1977978056 @default.
- W3032187331 cites W1979760466 @default.
- W3032187331 cites W1987352360 @default.
- W3032187331 cites W2003939279 @default.
- W3032187331 cites W2007468519 @default.
- W3032187331 cites W2008547125 @default.
- W3032187331 cites W2011010318 @default.
- W3032187331 cites W2012645261 @default.
- W3032187331 cites W2016907874 @default.
- W3032187331 cites W2022591200 @default.
- W3032187331 cites W2023214591 @default.
- W3032187331 cites W2024585152 @default.
- W3032187331 cites W2042348866 @default.
- W3032187331 cites W2062449448 @default.
- W3032187331 cites W2075575598 @default.
- W3032187331 cites W2109447294 @default.
- W3032187331 cites W2112464514 @default.
- W3032187331 cites W2117325793 @default.
- W3032187331 cites W2119757004 @default.
- W3032187331 cites W2132545125 @default.
- W3032187331 cites W2132914650 @default.
- W3032187331 cites W2133501143 @default.
- W3032187331 cites W2136181038 @default.
- W3032187331 cites W2136408258 @default.
- W3032187331 cites W2155096269 @default.
- W3032187331 cites W2161532325 @default.
- W3032187331 cites W2198531813 @default.
- W3032187331 cites W2337542812 @default.
- W3032187331 cites W2346996235 @default.
- W3032187331 cites W2390200613 @default.
- W3032187331 cites W2551852156 @default.
- W3032187331 cites W2565252434 @default.
- W3032187331 cites W2622954938 @default.
- W3032187331 cites W2745213557 @default.
- W3032187331 cites W2749465215 @default.
- W3032187331 cites W2755754083 @default.
- W3032187331 cites W2761437007 @default.
- W3032187331 cites W2769872076 @default.
- W3032187331 cites W2777096355 @default.
- W3032187331 cites W2788018159 @default.
- W3032187331 cites W2790589546 @default.
- W3032187331 cites W2888309680 @default.
- W3032187331 cites W2905053978 @default.
- W3032187331 cites W2913229076 @default.
- W3032187331 cites W2965270439 @default.
- W3032187331 cites W2971165559 @default.
- W3032187331 cites W4230547193 @default.
- W3032187331 doi "https://doi.org/10.3390/rs12111742" @default.
- W3032187331 hasPublicationYear "2020" @default.
- W3032187331 type Work @default.
- W3032187331 sameAs 3032187331 @default.
- W3032187331 citedByCount "22" @default.
- W3032187331 countsByYear W30321873312020 @default.
- W3032187331 countsByYear W30321873312021 @default.
- W3032187331 countsByYear W30321873312022 @default.
- W3032187331 countsByYear W30321873312023 @default.
- W3032187331 crossrefType "journal-article" @default.
- W3032187331 hasAuthorship W3032187331A5017225918 @default.
- W3032187331 hasAuthorship W3032187331A5061233973 @default.
- W3032187331 hasAuthorship W3032187331A5075043958 @default.
- W3032187331 hasBestOaLocation W30321873311 @default.
- W3032187331 hasConcept C100970517 @default.
- W3032187331 hasConcept C105795698 @default.
- W3032187331 hasConcept C111368507 @default.
- W3032187331 hasConcept C127313418 @default.
- W3032187331 hasConcept C132651083 @default.
- W3032187331 hasConcept C139945424 @default.
- W3032187331 hasConcept C142724271 @default.
- W3032187331 hasConcept C1549246 @default.
- W3032187331 hasConcept C18903297 @default.
- W3032187331 hasConcept C205649164 @default.
- W3032187331 hasConcept C2776133958 @default.
- W3032187331 hasConcept C2780376076 @default.
- W3032187331 hasConcept C33559203 @default.
- W3032187331 hasConcept C33923547 @default.
- W3032187331 hasConcept C39432304 @default.
- W3032187331 hasConcept C62649853 @default.
- W3032187331 hasConcept C71924100 @default.
- W3032187331 hasConcept C78869512 @default.
- W3032187331 hasConcept C86803240 @default.
- W3032187331 hasConceptScore W3032187331C100970517 @default.
- W3032187331 hasConceptScore W3032187331C105795698 @default.
- W3032187331 hasConceptScore W3032187331C111368507 @default.
- W3032187331 hasConceptScore W3032187331C127313418 @default.
- W3032187331 hasConceptScore W3032187331C132651083 @default.
- W3032187331 hasConceptScore W3032187331C139945424 @default.
- W3032187331 hasConceptScore W3032187331C142724271 @default.
- W3032187331 hasConceptScore W3032187331C1549246 @default.