Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032206113> ?p ?o ?g. }
- W3032206113 endingPage "2055" @default.
- W3032206113 startingPage "2044" @default.
- W3032206113 abstract "Duchenne muscular dystrophy (DMD), one of the most common neuromuscular disorders of children, is caused by the absence of dystrophin protein in striated muscle. Deletions of exons 43, 45, and 52 represent mutational “hotspot” regions in the dystrophin gene. We created three new DMD mouse models harboring deletions of exons 43, 45, and 52 to represent common DMD mutations. To optimize CRISPR-Cas9 genome editing using the single-cut strategy, we identified single guide RNAs (sgRNAs) capable of restoring dystrophin expression by inducing exon skipping and reframing. Intramuscular delivery of AAV9 encoding SpCas9 and selected sgRNAs efficiently restored dystrophin expression in these new mouse models, offering a platform for future studies of dystrophin gene correction therapies. To validate the therapeutic potential of this approach, we identified sgRNAs capable of restoring dystrophin expression by the single-cut strategy in cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) with each of these hotspot deletion mutations. We found that the potential effectiveness of individual sgRNAs in correction of DMD mutations cannot be predicted a priori, highlighting the importance of sgRNA design and testing as a prelude for applying gene editing as a therapeutic strategy for DMD. Duchenne muscular dystrophy (DMD), one of the most common neuromuscular disorders of children, is caused by the absence of dystrophin protein in striated muscle. Deletions of exons 43, 45, and 52 represent mutational “hotspot” regions in the dystrophin gene. We created three new DMD mouse models harboring deletions of exons 43, 45, and 52 to represent common DMD mutations. To optimize CRISPR-Cas9 genome editing using the single-cut strategy, we identified single guide RNAs (sgRNAs) capable of restoring dystrophin expression by inducing exon skipping and reframing. Intramuscular delivery of AAV9 encoding SpCas9 and selected sgRNAs efficiently restored dystrophin expression in these new mouse models, offering a platform for future studies of dystrophin gene correction therapies. To validate the therapeutic potential of this approach, we identified sgRNAs capable of restoring dystrophin expression by the single-cut strategy in cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) with each of these hotspot deletion mutations. We found that the potential effectiveness of individual sgRNAs in correction of DMD mutations cannot be predicted a priori, highlighting the importance of sgRNA design and testing as a prelude for applying gene editing as a therapeutic strategy for DMD." @default.
- W3032206113 created "2020-06-05" @default.
- W3032206113 creator A5000763721 @default.
- W3032206113 creator A5008411339 @default.
- W3032206113 creator A5016725091 @default.
- W3032206113 creator A5020015079 @default.
- W3032206113 creator A5023265234 @default.
- W3032206113 creator A5024308650 @default.
- W3032206113 creator A5065859286 @default.
- W3032206113 creator A5071880908 @default.
- W3032206113 creator A5074600638 @default.
- W3032206113 creator A5084182062 @default.
- W3032206113 creator A5085694146 @default.
- W3032206113 date "2020-09-01" @default.
- W3032206113 modified "2023-10-12" @default.
- W3032206113 title "Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing" @default.
- W3032206113 cites W1961689970 @default.
- W3032206113 cites W1977709885 @default.
- W3032206113 cites W1978576779 @default.
- W3032206113 cites W1997490017 @default.
- W3032206113 cites W1997975349 @default.
- W3032206113 cites W2001415246 @default.
- W3032206113 cites W2003171404 @default.
- W3032206113 cites W2008289270 @default.
- W3032206113 cites W2018483078 @default.
- W3032206113 cites W2022161423 @default.
- W3032206113 cites W2045435533 @default.
- W3032206113 cites W2046556168 @default.
- W3032206113 cites W2055111404 @default.
- W3032206113 cites W2062746471 @default.
- W3032206113 cites W2064815984 @default.
- W3032206113 cites W2066180106 @default.
- W3032206113 cites W2066390373 @default.
- W3032206113 cites W2081550861 @default.
- W3032206113 cites W2096261947 @default.
- W3032206113 cites W2097136884 @default.
- W3032206113 cites W2106070783 @default.
- W3032206113 cites W2137703332 @default.
- W3032206113 cites W2140557153 @default.
- W3032206113 cites W2152859894 @default.
- W3032206113 cites W2196662084 @default.
- W3032206113 cites W2203460689 @default.
- W3032206113 cites W2206766868 @default.
- W3032206113 cites W2206983740 @default.
- W3032206113 cites W2208696160 @default.
- W3032206113 cites W2563465499 @default.
- W3032206113 cites W2588637030 @default.
- W3032206113 cites W2604547638 @default.
- W3032206113 cites W2614090736 @default.
- W3032206113 cites W2736939674 @default.
- W3032206113 cites W2744732723 @default.
- W3032206113 cites W2765253110 @default.
- W3032206113 cites W2765602133 @default.
- W3032206113 cites W2775147596 @default.
- W3032206113 cites W2778098838 @default.
- W3032206113 cites W2793661486 @default.
- W3032206113 cites W2801589383 @default.
- W3032206113 cites W2889510460 @default.
- W3032206113 cites W2897295193 @default.
- W3032206113 cites W2914658811 @default.
- W3032206113 cites W2918808095 @default.
- W3032206113 cites W3002203125 @default.
- W3032206113 cites W3003248214 @default.
- W3032206113 cites W3008434296 @default.
- W3032206113 doi "https://doi.org/10.1016/j.ymthe.2020.05.024" @default.
- W3032206113 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7474267" @default.
- W3032206113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32892813" @default.
- W3032206113 hasPublicationYear "2020" @default.
- W3032206113 type Work @default.
- W3032206113 sameAs 3032206113 @default.
- W3032206113 citedByCount "47" @default.
- W3032206113 countsByYear W30322061132020 @default.
- W3032206113 countsByYear W30322061132021 @default.
- W3032206113 countsByYear W30322061132022 @default.
- W3032206113 countsByYear W30322061132023 @default.
- W3032206113 crossrefType "journal-article" @default.
- W3032206113 hasAuthorship W3032206113A5000763721 @default.
- W3032206113 hasAuthorship W3032206113A5008411339 @default.
- W3032206113 hasAuthorship W3032206113A5016725091 @default.
- W3032206113 hasAuthorship W3032206113A5020015079 @default.
- W3032206113 hasAuthorship W3032206113A5023265234 @default.
- W3032206113 hasAuthorship W3032206113A5024308650 @default.
- W3032206113 hasAuthorship W3032206113A5065859286 @default.
- W3032206113 hasAuthorship W3032206113A5071880908 @default.
- W3032206113 hasAuthorship W3032206113A5074600638 @default.
- W3032206113 hasAuthorship W3032206113A5084182062 @default.
- W3032206113 hasAuthorship W3032206113A5085694146 @default.
- W3032206113 hasBestOaLocation W30322061131 @default.
- W3032206113 hasConcept C104317684 @default.
- W3032206113 hasConcept C144501496 @default.
- W3032206113 hasConcept C194583182 @default.
- W3032206113 hasConcept C2778750056 @default.
- W3032206113 hasConcept C2778776201 @default.
- W3032206113 hasConcept C2778943923 @default.
- W3032206113 hasConcept C2779030066 @default.
- W3032206113 hasConcept C2780394045 @default.
- W3032206113 hasConcept C36823959 @default.
- W3032206113 hasConcept C54355233 @default.