Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032236170> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3032236170 endingPage "82" @default.
- W3032236170 startingPage "71" @default.
- W3032236170 abstract "Abstract In this paper, we present DONE, a novel framework for learning networks representations, which fundamentally supports numerous network analytic tasks such as node classification, clustering, and visualization. Most existing network embedding methods are unable to efficiently scale for large networks and usually suffer from performance issues. In addition, these methods cannot efficiently leverage the vertex labels that are usually very scarce in real-world networks. Our framework provides a powerful way to generate representations for network vertices without relying on user-defined heuristics for manual feature extraction. We present a deep autoencoder model to generate low-dimensional feature representations by learning network reconstruction and semi-supervised classification tasks. We propose a novel greedy algorithm based on vertex domination and centrality concepts to simplify networks while preserving network topology and community structure, namely GreedyNet. In addition, we propose a novel sampling approach to estimate the labels of unlabeled vertices and adopt it to learn superior embedding. Using network dominating vertices, our approach enhances the generalization and scalability of network embedding through simplifying the underlying network. To the best of our knowledge, we are the first to propose the idea of using network dominating vertices to enhance network embedding. The experimental results show that our method outperforms the state-of-the-art methods." @default.
- W3032236170 created "2020-06-05" @default.
- W3032236170 creator A5009060342 @default.
- W3032236170 creator A5015941300 @default.
- W3032236170 date "2020-10-01" @default.
- W3032236170 modified "2023-10-08" @default.
- W3032236170 title "DONE: Enhancing network embedding via greedy vertex domination" @default.
- W3032236170 cites W1987990114 @default.
- W3032236170 cites W2040924621 @default.
- W3032236170 cites W2100495367 @default.
- W3032236170 cites W2153959628 @default.
- W3032236170 cites W2157054705 @default.
- W3032236170 cites W2162630660 @default.
- W3032236170 cites W2163922914 @default.
- W3032236170 cites W2415243320 @default.
- W3032236170 cites W2808000122 @default.
- W3032236170 cites W2887092413 @default.
- W3032236170 cites W2962946486 @default.
- W3032236170 cites W3083234306 @default.
- W3032236170 doi "https://doi.org/10.1016/j.neucom.2020.05.055" @default.
- W3032236170 hasPublicationYear "2020" @default.
- W3032236170 type Work @default.
- W3032236170 sameAs 3032236170 @default.
- W3032236170 citedByCount "2" @default.
- W3032236170 countsByYear W30322361702022 @default.
- W3032236170 crossrefType "journal-article" @default.
- W3032236170 hasAuthorship W3032236170A5009060342 @default.
- W3032236170 hasAuthorship W3032236170A5015941300 @default.
- W3032236170 hasConcept C11413529 @default.
- W3032236170 hasConcept C114614502 @default.
- W3032236170 hasConcept C132525143 @default.
- W3032236170 hasConcept C154945302 @default.
- W3032236170 hasConcept C33923547 @default.
- W3032236170 hasConcept C41008148 @default.
- W3032236170 hasConcept C41608201 @default.
- W3032236170 hasConcept C51823790 @default.
- W3032236170 hasConcept C80444323 @default.
- W3032236170 hasConcept C80899671 @default.
- W3032236170 hasConceptScore W3032236170C11413529 @default.
- W3032236170 hasConceptScore W3032236170C114614502 @default.
- W3032236170 hasConceptScore W3032236170C132525143 @default.
- W3032236170 hasConceptScore W3032236170C154945302 @default.
- W3032236170 hasConceptScore W3032236170C33923547 @default.
- W3032236170 hasConceptScore W3032236170C41008148 @default.
- W3032236170 hasConceptScore W3032236170C41608201 @default.
- W3032236170 hasConceptScore W3032236170C51823790 @default.
- W3032236170 hasConceptScore W3032236170C80444323 @default.
- W3032236170 hasConceptScore W3032236170C80899671 @default.
- W3032236170 hasFunder F4320322919 @default.
- W3032236170 hasFunder F4320335777 @default.
- W3032236170 hasLocation W30322361701 @default.
- W3032236170 hasOpenAccess W3032236170 @default.
- W3032236170 hasPrimaryLocation W30322361701 @default.
- W3032236170 hasRelatedWork W1541319718 @default.
- W3032236170 hasRelatedWork W2037065294 @default.
- W3032236170 hasRelatedWork W2142909216 @default.
- W3032236170 hasRelatedWork W2949756879 @default.
- W3032236170 hasRelatedWork W3043229696 @default.
- W3032236170 hasRelatedWork W3121302458 @default.
- W3032236170 hasRelatedWork W3121833847 @default.
- W3032236170 hasRelatedWork W4287023929 @default.
- W3032236170 hasRelatedWork W4287375737 @default.
- W3032236170 hasRelatedWork W4289743391 @default.
- W3032236170 hasVolume "410" @default.
- W3032236170 isParatext "false" @default.
- W3032236170 isRetracted "false" @default.
- W3032236170 magId "3032236170" @default.
- W3032236170 workType "article" @default.