Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032275007> ?p ?o ?g. }
- W3032275007 endingPage "118198" @default.
- W3032275007 startingPage "118198" @default.
- W3032275007 abstract "Abstract Forests of the Eastern United States and North Eastern Canada have been devastated by the onslaught of beech bark disease (BBD). The cultivation and management of resistant trees is an important conservation issue. Disease resistance is an interplay between tree genetics and environmental factors. To further understand resistance to BBD, this study investigates the contribution of topographic factors to both the occurrence and the severity of beech bark disease through the examination of small-scale patterns of disease. Approximately two hundred trees of the species Fagus grandifolia (American beech) located on an eighty-five-acre plot in southwestern Vermont were monitored over five years for the presence and severity of BBD. Trees were examined yearly, during which time diameter at breast height (DBH) was recorded as well as a measure of disease severity. Topographical factors (aspect, slope, curvature, elevation, and aspect • slope) were assessed as potential predictors of disease presence and severity. Two distance measures of disease presence in nearby trees were also included to control for the spatial spread of the disease. Akaike’s Information Criterion (AIC) was used to determine which subset of parameters yielded the best binary and ordinal logistic models of disease presence and rank. Bayesian analysis was used to determine the joint posterior distribution for model parameters. Slope was a both significant factors in determining disease presence. Slope • aspect was significant in determining both the presence and disease severity. DBH, time, and weighted distance to diseased trees were strong indicators of both disease presence and severity. Curvature and elevation were not significant factors. Predictive models based on identified local topographical parameters can identify environmental factors conducive to resistance which can be utilized to inform and designate regional beech restoration sites. Such models can also identify potential candidate trees for resistance screening and genetic profiling. With the more recent availability of higher resolution USGS topographic maps for the northeastern United States, it is easier to determine and evaluate ideal resistant beech habitat. From these maps we can predict regions with healthier beech trees and suggest potential ecologically favorable restoration sites only using slope and aspect." @default.
- W3032275007 created "2020-06-05" @default.
- W3032275007 creator A5013208003 @default.
- W3032275007 creator A5070507705 @default.
- W3032275007 creator A5079779376 @default.
- W3032275007 creator A5087732899 @default.
- W3032275007 date "2020-09-01" @default.
- W3032275007 modified "2023-09-27" @default.
- W3032275007 title "A Bayesian analysis of topographic influences on the presence and severity of beech bark disease" @default.
- W3032275007 cites W1213549907 @default.
- W3032275007 cites W1506380016 @default.
- W3032275007 cites W1571985846 @default.
- W3032275007 cites W1575379607 @default.
- W3032275007 cites W1643478320 @default.
- W3032275007 cites W1964005054 @default.
- W3032275007 cites W1968493908 @default.
- W3032275007 cites W1970388631 @default.
- W3032275007 cites W1978989177 @default.
- W3032275007 cites W1993897679 @default.
- W3032275007 cites W1994442418 @default.
- W3032275007 cites W2002716813 @default.
- W3032275007 cites W2006429540 @default.
- W3032275007 cites W2007373388 @default.
- W3032275007 cites W2012212869 @default.
- W3032275007 cites W2034229104 @default.
- W3032275007 cites W2049839416 @default.
- W3032275007 cites W2070391396 @default.
- W3032275007 cites W2082299653 @default.
- W3032275007 cites W2083794269 @default.
- W3032275007 cites W2083875149 @default.
- W3032275007 cites W2088909030 @default.
- W3032275007 cites W2090871988 @default.
- W3032275007 cites W2102950786 @default.
- W3032275007 cites W2114163781 @default.
- W3032275007 cites W2117984148 @default.
- W3032275007 cites W2133860313 @default.
- W3032275007 cites W2137987110 @default.
- W3032275007 cites W2138710913 @default.
- W3032275007 cites W2138775526 @default.
- W3032275007 cites W2144817874 @default.
- W3032275007 cites W2145152984 @default.
- W3032275007 cites W2148534890 @default.
- W3032275007 cites W2153743907 @default.
- W3032275007 cites W2160253316 @default.
- W3032275007 cites W2160535742 @default.
- W3032275007 cites W2164711041 @default.
- W3032275007 cites W2166174031 @default.
- W3032275007 cites W2173624891 @default.
- W3032275007 cites W2174663128 @default.
- W3032275007 cites W2178014801 @default.
- W3032275007 cites W2180932691 @default.
- W3032275007 cites W2566645698 @default.
- W3032275007 cites W2604786170 @default.
- W3032275007 cites W2610766267 @default.
- W3032275007 cites W268516782 @default.
- W3032275007 cites W2788741123 @default.
- W3032275007 cites W2807101074 @default.
- W3032275007 cites W4252574499 @default.
- W3032275007 cites W928528765 @default.
- W3032275007 doi "https://doi.org/10.1016/j.foreco.2020.118198" @default.
- W3032275007 hasPublicationYear "2020" @default.
- W3032275007 type Work @default.
- W3032275007 sameAs 3032275007 @default.
- W3032275007 citedByCount "6" @default.
- W3032275007 countsByYear W30322750072021 @default.
- W3032275007 countsByYear W30322750072022 @default.
- W3032275007 countsByYear W30322750072023 @default.
- W3032275007 crossrefType "journal-article" @default.
- W3032275007 hasAuthorship W3032275007A5013208003 @default.
- W3032275007 hasAuthorship W3032275007A5070507705 @default.
- W3032275007 hasAuthorship W3032275007A5079779376 @default.
- W3032275007 hasAuthorship W3032275007A5087732899 @default.
- W3032275007 hasConcept C105795698 @default.
- W3032275007 hasConcept C107673813 @default.
- W3032275007 hasConcept C133446333 @default.
- W3032275007 hasConcept C18903297 @default.
- W3032275007 hasConcept C2776500793 @default.
- W3032275007 hasConcept C33923547 @default.
- W3032275007 hasConcept C39432304 @default.
- W3032275007 hasConcept C86803240 @default.
- W3032275007 hasConceptScore W3032275007C105795698 @default.
- W3032275007 hasConceptScore W3032275007C107673813 @default.
- W3032275007 hasConceptScore W3032275007C133446333 @default.
- W3032275007 hasConceptScore W3032275007C18903297 @default.
- W3032275007 hasConceptScore W3032275007C2776500793 @default.
- W3032275007 hasConceptScore W3032275007C33923547 @default.
- W3032275007 hasConceptScore W3032275007C39432304 @default.
- W3032275007 hasConceptScore W3032275007C86803240 @default.
- W3032275007 hasLocation W30322750071 @default.
- W3032275007 hasOpenAccess W3032275007 @default.
- W3032275007 hasPrimaryLocation W30322750071 @default.
- W3032275007 hasRelatedWork W1571985846 @default.
- W3032275007 hasRelatedWork W2012683804 @default.
- W3032275007 hasRelatedWork W2014061007 @default.
- W3032275007 hasRelatedWork W2145527723 @default.
- W3032275007 hasRelatedWork W224974258 @default.
- W3032275007 hasRelatedWork W2911594527 @default.
- W3032275007 hasRelatedWork W3000746569 @default.