Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032372024> ?p ?o ?g. }
- W3032372024 endingPage "e19509" @default.
- W3032372024 startingPage "e19509" @default.
- W3032372024 abstract "Background The coronavirus disease (COVID-19) pandemic is a global health emergency with over 6 million cases worldwide as of the beginning of June 2020. The pandemic is historic in scope and precedent given its emergence in an increasingly digital era. Importantly, there have been concerns about the accuracy of COVID-19 case counts due to issues such as lack of access to testing and difficulty in measuring recoveries. Objective The aims of this study were to detect and characterize user-generated conversations that could be associated with COVID-19-related symptoms, experiences with access to testing, and mentions of disease recovery using an unsupervised machine learning approach. Methods Tweets were collected from the Twitter public streaming application programming interface from March 3-20, 2020, filtered for general COVID-19-related keywords and then further filtered for terms that could be related to COVID-19 symptoms as self-reported by users. Tweets were analyzed using an unsupervised machine learning approach called the biterm topic model (BTM), where groups of tweets containing the same word-related themes were separated into topic clusters that included conversations about symptoms, testing, and recovery. Tweets in these clusters were then extracted and manually annotated for content analysis and assessed for their statistical and geographic characteristics. Results A total of 4,492,954 tweets were collected that contained terms that could be related to COVID-19 symptoms. After using BTM to identify relevant topic clusters and removing duplicate tweets, we identified a total of 3465 (<1%) tweets that included user-generated conversations about experiences that users associated with possible COVID-19 symptoms and other disease experiences. These tweets were grouped into five main categories including first- and secondhand reports of symptoms, symptom reporting concurrent with lack of testing, discussion of recovery, confirmation of negative COVID-19 diagnosis after receiving testing, and users recalling symptoms and questioning whether they might have been previously infected with COVID-19. The co-occurrence of tweets for these themes was statistically significant for users reporting symptoms with a lack of testing and with a discussion of recovery. A total of 63% (n=1112) of the geotagged tweets were located in the United States. Conclusions This study used unsupervised machine learning for the purposes of characterizing self-reporting of symptoms, experiences with testing, and mentions of recovery related to COVID-19. Many users reported symptoms they thought were related to COVID-19, but they were not able to get tested to confirm their concerns. In the absence of testing availability and confirmation, accurate case estimations for this period of the outbreak may never be known. Future studies should continue to explore the utility of infoveillance approaches to estimate COVID-19 disease severity." @default.
- W3032372024 created "2020-06-05" @default.
- W3032372024 creator A5022424087 @default.
- W3032372024 creator A5027520246 @default.
- W3032372024 creator A5034872190 @default.
- W3032372024 creator A5035342147 @default.
- W3032372024 creator A5036381691 @default.
- W3032372024 creator A5046725740 @default.
- W3032372024 creator A5061275080 @default.
- W3032372024 creator A5075149676 @default.
- W3032372024 creator A5082895516 @default.
- W3032372024 date "2020-06-08" @default.
- W3032372024 modified "2023-10-18" @default.
- W3032372024 title "Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study" @default.
- W3032372024 cites W1714665356 @default.
- W3032372024 cites W1984926150 @default.
- W3032372024 cites W2010079596 @default.
- W3032372024 cites W2022783018 @default.
- W3032372024 cites W2282112529 @default.
- W3032372024 cites W2514038762 @default.
- W3032372024 cites W2754444075 @default.
- W3032372024 cites W2766959695 @default.
- W3032372024 cites W2793483901 @default.
- W3032372024 cites W2897611889 @default.
- W3032372024 cites W3008125026 @default.
- W3032372024 cites W3010267415 @default.
- W3032372024 cites W3011220334 @default.
- W3032372024 cites W3011486546 @default.
- W3032372024 cites W3011695682 @default.
- W3032372024 cites W3012297079 @default.
- W3032372024 cites W3012798837 @default.
- W3032372024 cites W3013215798 @default.
- W3032372024 cites W3013967887 @default.
- W3032372024 cites W3014317844 @default.
- W3032372024 cites W3014318908 @default.
- W3032372024 cites W3015218641 @default.
- W3032372024 cites W3015512447 @default.
- W3032372024 cites W3015671793 @default.
- W3032372024 cites W3025636516 @default.
- W3032372024 doi "https://doi.org/10.2196/19509" @default.
- W3032372024 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7282475" @default.
- W3032372024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32490846" @default.
- W3032372024 hasPublicationYear "2020" @default.
- W3032372024 type Work @default.
- W3032372024 sameAs 3032372024 @default.
- W3032372024 citedByCount "112" @default.
- W3032372024 countsByYear W30323720242020 @default.
- W3032372024 countsByYear W30323720242021 @default.
- W3032372024 countsByYear W30323720242022 @default.
- W3032372024 countsByYear W30323720242023 @default.
- W3032372024 crossrefType "journal-article" @default.
- W3032372024 hasAuthorship W3032372024A5022424087 @default.
- W3032372024 hasAuthorship W3032372024A5027520246 @default.
- W3032372024 hasAuthorship W3032372024A5034872190 @default.
- W3032372024 hasAuthorship W3032372024A5035342147 @default.
- W3032372024 hasAuthorship W3032372024A5036381691 @default.
- W3032372024 hasAuthorship W3032372024A5046725740 @default.
- W3032372024 hasAuthorship W3032372024A5061275080 @default.
- W3032372024 hasAuthorship W3032372024A5075149676 @default.
- W3032372024 hasAuthorship W3032372024A5082895516 @default.
- W3032372024 hasBestOaLocation W30323720241 @default.
- W3032372024 hasConcept C119857082 @default.
- W3032372024 hasConcept C136764020 @default.
- W3032372024 hasConcept C138816342 @default.
- W3032372024 hasConcept C142724271 @default.
- W3032372024 hasConcept C154945302 @default.
- W3032372024 hasConcept C159110408 @default.
- W3032372024 hasConcept C171686336 @default.
- W3032372024 hasConcept C204321447 @default.
- W3032372024 hasConcept C23123220 @default.
- W3032372024 hasConcept C2776361769 @default.
- W3032372024 hasConcept C2779134260 @default.
- W3032372024 hasConcept C3008058167 @default.
- W3032372024 hasConcept C41008148 @default.
- W3032372024 hasConcept C518677369 @default.
- W3032372024 hasConcept C524204448 @default.
- W3032372024 hasConcept C71924100 @default.
- W3032372024 hasConcept C89623803 @default.
- W3032372024 hasConceptScore W3032372024C119857082 @default.
- W3032372024 hasConceptScore W3032372024C136764020 @default.
- W3032372024 hasConceptScore W3032372024C138816342 @default.
- W3032372024 hasConceptScore W3032372024C142724271 @default.
- W3032372024 hasConceptScore W3032372024C154945302 @default.
- W3032372024 hasConceptScore W3032372024C159110408 @default.
- W3032372024 hasConceptScore W3032372024C171686336 @default.
- W3032372024 hasConceptScore W3032372024C204321447 @default.
- W3032372024 hasConceptScore W3032372024C23123220 @default.
- W3032372024 hasConceptScore W3032372024C2776361769 @default.
- W3032372024 hasConceptScore W3032372024C2779134260 @default.
- W3032372024 hasConceptScore W3032372024C3008058167 @default.
- W3032372024 hasConceptScore W3032372024C41008148 @default.
- W3032372024 hasConceptScore W3032372024C518677369 @default.
- W3032372024 hasConceptScore W3032372024C524204448 @default.
- W3032372024 hasConceptScore W3032372024C71924100 @default.
- W3032372024 hasConceptScore W3032372024C89623803 @default.
- W3032372024 hasIssue "2" @default.
- W3032372024 hasLocation W30323720241 @default.
- W3032372024 hasLocation W30323720242 @default.