Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032912807> ?p ?o ?g. }
- W3032912807 abstract "Long noncoding RNA (lncRNA) are implicated in various genetic diseases and cancer, attributed to their critical role in gene regulation. RNA sequencing is used to capture their transcripts from certain cell types or conditions. For some studies, lncRNA interactions with other biomolecules have also been captured, which can give clues to their mechanisms of action. Complementary textit{in silico} methods have been proposed to predict non-coding nature of transcripts and to analyze available RNA interaction data. Here we provide a critical review of such methods and identify associated challenges. Broadly, these can be categorized as reference-based and reference-free or textit{ab initio}, with the former category of methods requiring a comprehensive annotated reference. The textit{ab initio} methods can make use of machine learning classifiers that are trained on features extracted from sequences, making them suitable to predict novel transcripts, especially in non-model species. Machine learning approaches such as Logistic Regression, Support Vector Machines, Random Forest, and Deep Learning are commonly used. Initial approaches relied on basic sequential features to train the model, whereas the use of secondary structural features appears to be a promising approach for functional annotation. However, adding secondary features will result in model complexities, thus demanding an algorithm that can handle it and furthermore, considerably increasing the utilization of computation resources. Computational strategies combining identification and functional annotation which can be easily customized are currently lacking. These can be of immense value to accelerate research in this class of RNAs." @default.
- W3032912807 created "2020-06-12" @default.
- W3032912807 creator A5026685311 @default.
- W3032912807 creator A5056884808 @default.
- W3032912807 creator A5069146692 @default.
- W3032912807 date "2020-06-09" @default.
- W3032912807 modified "2023-09-23" @default.
- W3032912807 title "Computational Approaches to Functionally Annotate Long Noncoding RNA (lncRNA)" @default.
- W3032912807 cites W1981365458 @default.
- W3032912807 cites W1981509058 @default.
- W3032912807 cites W1982660543 @default.
- W3032912807 cites W1991679818 @default.
- W3032912807 cites W1992212213 @default.
- W3032912807 cites W1995163890 @default.
- W3032912807 cites W2006936482 @default.
- W3032912807 cites W2007006753 @default.
- W3032912807 cites W2016005198 @default.
- W3032912807 cites W2017560563 @default.
- W3032912807 cites W2019522436 @default.
- W3032912807 cites W2030047242 @default.
- W3032912807 cites W2037456901 @default.
- W3032912807 cites W2040356728 @default.
- W3032912807 cites W2041770101 @default.
- W3032912807 cites W2042419740 @default.
- W3032912807 cites W2043317822 @default.
- W3032912807 cites W2045317504 @default.
- W3032912807 cites W2046498307 @default.
- W3032912807 cites W2048194168 @default.
- W3032912807 cites W2049760108 @default.
- W3032912807 cites W2053855164 @default.
- W3032912807 cites W2053998703 @default.
- W3032912807 cites W2054697783 @default.
- W3032912807 cites W2055720906 @default.
- W3032912807 cites W2056852629 @default.
- W3032912807 cites W2061548680 @default.
- W3032912807 cites W2061705235 @default.
- W3032912807 cites W2068353914 @default.
- W3032912807 cites W2071271349 @default.
- W3032912807 cites W2073048705 @default.
- W3032912807 cites W2075022033 @default.
- W3032912807 cites W2079983771 @default.
- W3032912807 cites W2081763928 @default.
- W3032912807 cites W2085220756 @default.
- W3032912807 cites W2085567058 @default.
- W3032912807 cites W2087377443 @default.
- W3032912807 cites W2096465161 @default.
- W3032912807 cites W2097009498 @default.
- W3032912807 cites W2112001233 @default.
- W3032912807 cites W2114527699 @default.
- W3032912807 cites W2116236561 @default.
- W3032912807 cites W2117165052 @default.
- W3032912807 cites W2124050695 @default.
- W3032912807 cites W2129375421 @default.
- W3032912807 cites W2132341951 @default.
- W3032912807 cites W2136550485 @default.
- W3032912807 cites W2141451151 @default.
- W3032912807 cites W2144137532 @default.
- W3032912807 cites W2146573461 @default.
- W3032912807 cites W2152623715 @default.
- W3032912807 cites W2156880688 @default.
- W3032912807 cites W2166881940 @default.
- W3032912807 cites W2167827628 @default.
- W3032912807 cites W2169674658 @default.
- W3032912807 cites W2171797570 @default.
- W3032912807 cites W2177321125 @default.
- W3032912807 cites W2282084472 @default.
- W3032912807 cites W2340421620 @default.
- W3032912807 cites W2415774299 @default.
- W3032912807 cites W2513346731 @default.
- W3032912807 cites W2538571252 @default.
- W3032912807 cites W2556630929 @default.
- W3032912807 cites W2558179461 @default.
- W3032912807 cites W2567665210 @default.
- W3032912807 cites W2582023661 @default.
- W3032912807 cites W2593488635 @default.
- W3032912807 cites W2615786037 @default.
- W3032912807 cites W2741808572 @default.
- W3032912807 cites W2787822418 @default.
- W3032912807 cites W2807036076 @default.
- W3032912807 cites W2886900083 @default.
- W3032912807 cites W2888500336 @default.
- W3032912807 cites W2895679848 @default.
- W3032912807 cites W2896285686 @default.
- W3032912807 cites W2902360398 @default.
- W3032912807 cites W2908202794 @default.
- W3032912807 cites W2914805278 @default.
- W3032912807 cites W2945901478 @default.
- W3032912807 cites W2947902519 @default.
- W3032912807 cites W2980782218 @default.
- W3032912807 cites W2982711111 @default.
- W3032912807 cites W2989384289 @default.
- W3032912807 cites W3002341417 @default.
- W3032912807 cites W3005188475 @default.
- W3032912807 cites W3032208718 @default.
- W3032912807 cites W3045704485 @default.
- W3032912807 doi "https://doi.org/10.20944/preprints202006.0116.v1" @default.
- W3032912807 hasPublicationYear "2020" @default.
- W3032912807 type Work @default.
- W3032912807 sameAs 3032912807 @default.
- W3032912807 citedByCount "1" @default.