Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032942004> ?p ?o ?g. }
- W3032942004 abstract "Most organisms are more closely related to nearby than distant members of their species, creating spatial autocorrelations in genetic data. This allows us to predict the location of origin of a genetic sample by comparing it to a set of samples of known geographic origin. Here, we describe a deep learning method, which we call Locator, to accomplish this task faster and more accurately than existing approaches. In simulations, Locator infers sample location to within 4.1 generations of dispersal and runs at least an order of magnitude faster than a recent model-based approach. We leverage Locator’s computational efficiency to predict locations separately in windows across the genome, which allows us to both quantify uncertainty and describe the mosaic ancestry and patterns of geographic mixing that characterize many populations. Applied to whole-genome sequence data from Plasmodium parasites, Anopheles mosquitoes, and global human populations, this approach yields median test errors of 16.9km, 5.7km, and 85km, respectively." @default.
- W3032942004 created "2020-06-12" @default.
- W3032942004 creator A5001852230 @default.
- W3032942004 creator A5005571919 @default.
- W3032942004 creator A5021950882 @default.
- W3032942004 date "2020-06-08" @default.
- W3032942004 modified "2023-10-09" @default.
- W3032942004 title "Predicting geographic location from genetic variation with deep neural networks" @default.
- W3032942004 cites W1939346899 @default.
- W3032942004 cites W1946356339 @default.
- W3032942004 cites W1950384241 @default.
- W3032942004 cites W1973603244 @default.
- W3032942004 cites W2010131461 @default.
- W3032942004 cites W2025253353 @default.
- W3032942004 cites W2050995560 @default.
- W3032942004 cites W2058401000 @default.
- W3032942004 cites W2058633835 @default.
- W3032942004 cites W2059110495 @default.
- W3032942004 cites W2080873675 @default.
- W3032942004 cites W2093557681 @default.
- W3032942004 cites W2112428133 @default.
- W3032942004 cites W2119180969 @default.
- W3032942004 cites W2120951751 @default.
- W3032942004 cites W2129344644 @default.
- W3032942004 cites W2136256607 @default.
- W3032942004 cites W2138624008 @default.
- W3032942004 cites W2141042406 @default.
- W3032942004 cites W2141857364 @default.
- W3032942004 cites W2142431182 @default.
- W3032942004 cites W2146290595 @default.
- W3032942004 cites W2146292423 @default.
- W3032942004 cites W2166415701 @default.
- W3032942004 cites W2174950805 @default.
- W3032942004 cites W2415499577 @default.
- W3032942004 cites W2541669241 @default.
- W3032942004 cites W2770432019 @default.
- W3032942004 cites W2773279226 @default.
- W3032942004 cites W2900471700 @default.
- W3032942004 cites W2938656690 @default.
- W3032942004 cites W2947636297 @default.
- W3032942004 cites W2947717298 @default.
- W3032942004 cites W2949153885 @default.
- W3032942004 cites W2949851869 @default.
- W3032942004 cites W2950327064 @default.
- W3032942004 cites W2950332142 @default.
- W3032942004 cites W2950732129 @default.
- W3032942004 cites W2951402175 @default.
- W3032942004 cites W2951621382 @default.
- W3032942004 cites W2952978770 @default.
- W3032942004 cites W2959086676 @default.
- W3032942004 cites W2968632108 @default.
- W3032942004 cites W2971459842 @default.
- W3032942004 cites W2977888919 @default.
- W3032942004 cites W3008479721 @default.
- W3032942004 cites W3011413344 @default.
- W3032942004 cites W3130499523 @default.
- W3032942004 cites W3208370382 @default.
- W3032942004 cites W4212883601 @default.
- W3032942004 cites W4214656930 @default.
- W3032942004 cites W4247126328 @default.
- W3032942004 cites W2423592745 @default.
- W3032942004 doi "https://doi.org/10.7554/elife.54507" @default.
- W3032942004 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7324158" @default.
- W3032942004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32511092" @default.
- W3032942004 hasPublicationYear "2020" @default.
- W3032942004 type Work @default.
- W3032942004 sameAs 3032942004 @default.
- W3032942004 citedByCount "55" @default.
- W3032942004 countsByYear W30329420042019 @default.
- W3032942004 countsByYear W30329420042020 @default.
- W3032942004 countsByYear W30329420042021 @default.
- W3032942004 countsByYear W30329420042022 @default.
- W3032942004 countsByYear W30329420042023 @default.
- W3032942004 crossrefType "journal-article" @default.
- W3032942004 hasAuthorship W3032942004A5001852230 @default.
- W3032942004 hasAuthorship W3032942004A5005571919 @default.
- W3032942004 hasAuthorship W3032942004A5021950882 @default.
- W3032942004 hasBestOaLocation W30329420041 @default.
- W3032942004 hasConcept C104317684 @default.
- W3032942004 hasConcept C119857082 @default.
- W3032942004 hasConcept C141231307 @default.
- W3032942004 hasConcept C144024400 @default.
- W3032942004 hasConcept C149923435 @default.
- W3032942004 hasConcept C153083717 @default.
- W3032942004 hasConcept C154945302 @default.
- W3032942004 hasConcept C2908647359 @default.
- W3032942004 hasConcept C41008148 @default.
- W3032942004 hasConcept C47559259 @default.
- W3032942004 hasConcept C54355233 @default.
- W3032942004 hasConcept C70721500 @default.
- W3032942004 hasConcept C78458016 @default.
- W3032942004 hasConcept C86803240 @default.
- W3032942004 hasConceptScore W3032942004C104317684 @default.
- W3032942004 hasConceptScore W3032942004C119857082 @default.
- W3032942004 hasConceptScore W3032942004C141231307 @default.
- W3032942004 hasConceptScore W3032942004C144024400 @default.
- W3032942004 hasConceptScore W3032942004C149923435 @default.
- W3032942004 hasConceptScore W3032942004C153083717 @default.
- W3032942004 hasConceptScore W3032942004C154945302 @default.
- W3032942004 hasConceptScore W3032942004C2908647359 @default.