Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032982947> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3032982947 endingPage "102273" @default.
- W3032982947 startingPage "102273" @default.
- W3032982947 abstract "Vital to the task of Sentiment Analysis (SA), or automatically mining sentiment expression from text, is a sentiment lexicon. This fundamental lexical resource comprises the smallest sentiment-carrying units of text, words, annotated for their sentiment properties, and aids in SA tasks on larger pieces of text. Unfortunately, digital dictionaries do not readily include information on the sentiment properties of their entries, and manually compiling sentiment lexicons is tedious in terms of annotator time and effort. This has resulted in the emergence of a large number of research works concentrated on automated sentiment lexicon generation. The dictionary-based approach involves leveraging digital dictionaries, while the corpus-based approach involves exploiting co-occurrence statistics embedded in text corpora. Although the former approach has been exhaustively investigated, the majority of works focus on terms. The few state-of-the-art models concentrated on the finer-grained term sense level remain to exhibit several prominent limitations, e.g., the proposed semantic relations algorithm retrieves only senses that are at a close proximity to the seed senses in the semantic network, thus prohibiting the retrieval of remote sentiment-carrying senses beyond the reach of the ‘radius’ defined by number of iterations of semantic relations expansion. The proposed model aims to overcome the issues inherent in dictionary-based sense-level sentiment lexicon generation models using: (1) null seed sets, and a morphological approach inspired by the Marking Theory in Linguistics to populate them automatically; (2) a dual-step context-aware gloss expansion algorithm that ‘mines’ human defined gloss information from a digital dictionary, ensuring senses overlooked by the semantic relations expansion algorithm are identified; and (3) a fully-unsupervised sentiment categorization algorithm on the basis of the Network Theory. The results demonstrate that context-aware in-gloss matching successfully retrieves senses beyond the reach of the semantic relations expansion algorithm used by prominent, well-known models. Evaluation of the proposed model to accurately assign senses with polarity demonstrates that it is on par with state-of-the-art models against the same gold standard benchmarks. The model has theoretical implications in future work to effectively exploit the readily-available human-defined gloss information in a digital dictionary, in the task of assigning polarity to term senses. Extrinsic evaluation in a real-world sentiment classification task on multiple publically-available varying-domain datasets demonstrates its practical implication and application in sentiment analysis, as well as in other related fields such as information science, opinion retrieval and computational linguistics." @default.
- W3032982947 created "2020-06-12" @default.
- W3032982947 creator A5022576165 @default.
- W3032982947 creator A5058386270 @default.
- W3032982947 creator A5084358405 @default.
- W3032982947 date "2020-11-01" @default.
- W3032982947 modified "2023-10-14" @default.
- W3032982947 title "Deriving the sentiment polarity of term senses using dual-step context-aware in-gloss matching" @default.
- W3032982947 cites W1969105873 @default.
- W3032982947 cites W1990435674 @default.
- W3032982947 cites W1991873845 @default.
- W3032982947 cites W2046484912 @default.
- W3032982947 cites W2084046180 @default.
- W3032982947 cites W2087138776 @default.
- W3032982947 cites W2102381086 @default.
- W3032982947 cites W2168625136 @default.
- W3032982947 cites W2335703454 @default.
- W3032982947 cites W2346975490 @default.
- W3032982947 cites W2401379394 @default.
- W3032982947 cites W2474565205 @default.
- W3032982947 cites W2517796890 @default.
- W3032982947 cites W2546935677 @default.
- W3032982947 cites W2581304338 @default.
- W3032982947 cites W2583955077 @default.
- W3032982947 cites W2601386784 @default.
- W3032982947 cites W2766671363 @default.
- W3032982947 cites W2778003548 @default.
- W3032982947 cites W2780698117 @default.
- W3032982947 cites W2801599720 @default.
- W3032982947 cites W2889996681 @default.
- W3032982947 cites W2890269216 @default.
- W3032982947 cites W2900667762 @default.
- W3032982947 cites W2901858379 @default.
- W3032982947 cites W2910215611 @default.
- W3032982947 cites W2910656009 @default.
- W3032982947 cites W2913360413 @default.
- W3032982947 cites W2914820290 @default.
- W3032982947 cites W2937626916 @default.
- W3032982947 cites W2968745142 @default.
- W3032982947 cites W3102444842 @default.
- W3032982947 doi "https://doi.org/10.1016/j.ipm.2020.102273" @default.
- W3032982947 hasPublicationYear "2020" @default.
- W3032982947 type Work @default.
- W3032982947 sameAs 3032982947 @default.
- W3032982947 citedByCount "7" @default.
- W3032982947 countsByYear W30329829472020 @default.
- W3032982947 countsByYear W30329829472021 @default.
- W3032982947 countsByYear W30329829472022 @default.
- W3032982947 countsByYear W30329829472023 @default.
- W3032982947 crossrefType "journal-article" @default.
- W3032982947 hasAuthorship W3032982947A5022576165 @default.
- W3032982947 hasAuthorship W3032982947A5058386270 @default.
- W3032982947 hasAuthorship W3032982947A5084358405 @default.
- W3032982947 hasConcept C143025027 @default.
- W3032982947 hasConcept C151730666 @default.
- W3032982947 hasConcept C154945302 @default.
- W3032982947 hasConcept C178790620 @default.
- W3032982947 hasConcept C185592680 @default.
- W3032982947 hasConcept C204321447 @default.
- W3032982947 hasConcept C23123220 @default.
- W3032982947 hasConcept C2778121359 @default.
- W3032982947 hasConcept C2779343474 @default.
- W3032982947 hasConcept C2781448156 @default.
- W3032982947 hasConcept C41008148 @default.
- W3032982947 hasConcept C66402592 @default.
- W3032982947 hasConcept C86803240 @default.
- W3032982947 hasConceptScore W3032982947C143025027 @default.
- W3032982947 hasConceptScore W3032982947C151730666 @default.
- W3032982947 hasConceptScore W3032982947C154945302 @default.
- W3032982947 hasConceptScore W3032982947C178790620 @default.
- W3032982947 hasConceptScore W3032982947C185592680 @default.
- W3032982947 hasConceptScore W3032982947C204321447 @default.
- W3032982947 hasConceptScore W3032982947C23123220 @default.
- W3032982947 hasConceptScore W3032982947C2778121359 @default.
- W3032982947 hasConceptScore W3032982947C2779343474 @default.
- W3032982947 hasConceptScore W3032982947C2781448156 @default.
- W3032982947 hasConceptScore W3032982947C41008148 @default.
- W3032982947 hasConceptScore W3032982947C66402592 @default.
- W3032982947 hasConceptScore W3032982947C86803240 @default.
- W3032982947 hasIssue "6" @default.
- W3032982947 hasLocation W30329829471 @default.
- W3032982947 hasOpenAccess W3032982947 @default.
- W3032982947 hasPrimaryLocation W30329829471 @default.
- W3032982947 hasRelatedWork W1484312846 @default.
- W3032982947 hasRelatedWork W1994972134 @default.
- W3032982947 hasRelatedWork W2018803240 @default.
- W3032982947 hasRelatedWork W2467206427 @default.
- W3032982947 hasRelatedWork W2587830315 @default.
- W3032982947 hasRelatedWork W2946872345 @default.
- W3032982947 hasRelatedWork W2965885965 @default.
- W3032982947 hasRelatedWork W3011677438 @default.
- W3032982947 hasRelatedWork W3153487575 @default.
- W3032982947 hasRelatedWork W4226173368 @default.
- W3032982947 hasVolume "57" @default.
- W3032982947 isParatext "false" @default.
- W3032982947 isRetracted "false" @default.
- W3032982947 magId "3032982947" @default.
- W3032982947 workType "article" @default.