Matches in SemOpenAlex for { <https://semopenalex.org/work/W3032990727> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3032990727 abstract "Nowadays, with the rapid development of social media, there is a great deal of news produced every day. How to detect fake news automatically from a large of multimedia posts has become very important for people, the government and news recommendation sites. However, most of the existing approaches either extract features from the text of the post which is a single modality or simply concatenate the visual features and textual features of a post to get a multimodal feature and detect fake news. Most of them ignore the background knowledge hidden in the text content of the post which facilitates fake news detection. To address these issues, we propose a novel Knowledge-driven Multimodal Graph Convolutional Network (KMGCN) to model the semantic representations by jointly modeling the textual information, knowledge concepts and visual information into a unified framework for fake news detection. Instead of viewing text content as word sequences normally, we convert them into a graph, which can model non-consecutive phrases for better obtaining the composition of semantics. Besides, we not only convert visual information as nodes of graphs but also retrieve external knowledge from real-world knowledge graph as nodes of graphs to provide complementary semantics information to improve fake news detection. We utilize a well-designed graph convolutional network to extract the semantic representation of these graphs. Extensive experiments on two public real-world datasets illustrate the validation of our approach." @default.
- W3032990727 created "2020-06-12" @default.
- W3032990727 creator A5007267891 @default.
- W3032990727 creator A5022636178 @default.
- W3032990727 creator A5024809473 @default.
- W3032990727 creator A5053866603 @default.
- W3032990727 creator A5073601707 @default.
- W3032990727 date "2020-06-08" @default.
- W3032990727 modified "2023-10-16" @default.
- W3032990727 title "Fake News Detection via Knowledge-driven Multimodal Graph Convolutional Networks" @default.
- W3032990727 cites W1975594555 @default.
- W3032990727 cites W2032897813 @default.
- W3032990727 cites W2084591134 @default.
- W3032990727 cites W2100341149 @default.
- W3032990727 cites W2114544510 @default.
- W3032990727 cites W2138605095 @default.
- W3032990727 cites W2737907513 @default.
- W3032990727 cites W2741930413 @default.
- W3032990727 cites W2742330194 @default.
- W3032990727 cites W2766462585 @default.
- W3032990727 cites W2788667846 @default.
- W3032990727 cites W2809476703 @default.
- W3032990727 cites W2896675016 @default.
- W3032990727 cites W2912305564 @default.
- W3032990727 cites W2962946486 @default.
- W3032990727 cites W2963523292 @default.
- W3032990727 cites W2963653811 @default.
- W3032990727 cites W2963691861 @default.
- W3032990727 cites W2963964898 @default.
- W3032990727 cites W2981972397 @default.
- W3032990727 cites W2982137384 @default.
- W3032990727 doi "https://doi.org/10.1145/3372278.3390713" @default.
- W3032990727 hasPublicationYear "2020" @default.
- W3032990727 type Work @default.
- W3032990727 sameAs 3032990727 @default.
- W3032990727 citedByCount "63" @default.
- W3032990727 countsByYear W30329907272020 @default.
- W3032990727 countsByYear W30329907272021 @default.
- W3032990727 countsByYear W30329907272022 @default.
- W3032990727 countsByYear W30329907272023 @default.
- W3032990727 crossrefType "proceedings-article" @default.
- W3032990727 hasAuthorship W3032990727A5007267891 @default.
- W3032990727 hasAuthorship W3032990727A5022636178 @default.
- W3032990727 hasAuthorship W3032990727A5024809473 @default.
- W3032990727 hasAuthorship W3032990727A5053866603 @default.
- W3032990727 hasAuthorship W3032990727A5073601707 @default.
- W3032990727 hasConcept C115961682 @default.
- W3032990727 hasConcept C132525143 @default.
- W3032990727 hasConcept C154945302 @default.
- W3032990727 hasConcept C1667742 @default.
- W3032990727 hasConcept C184337299 @default.
- W3032990727 hasConcept C199360897 @default.
- W3032990727 hasConcept C204321447 @default.
- W3032990727 hasConcept C23123220 @default.
- W3032990727 hasConcept C2987255567 @default.
- W3032990727 hasConcept C41008148 @default.
- W3032990727 hasConcept C80444323 @default.
- W3032990727 hasConcept C81363708 @default.
- W3032990727 hasConcept C86034646 @default.
- W3032990727 hasConceptScore W3032990727C115961682 @default.
- W3032990727 hasConceptScore W3032990727C132525143 @default.
- W3032990727 hasConceptScore W3032990727C154945302 @default.
- W3032990727 hasConceptScore W3032990727C1667742 @default.
- W3032990727 hasConceptScore W3032990727C184337299 @default.
- W3032990727 hasConceptScore W3032990727C199360897 @default.
- W3032990727 hasConceptScore W3032990727C204321447 @default.
- W3032990727 hasConceptScore W3032990727C23123220 @default.
- W3032990727 hasConceptScore W3032990727C2987255567 @default.
- W3032990727 hasConceptScore W3032990727C41008148 @default.
- W3032990727 hasConceptScore W3032990727C80444323 @default.
- W3032990727 hasConceptScore W3032990727C81363708 @default.
- W3032990727 hasConceptScore W3032990727C86034646 @default.
- W3032990727 hasLocation W30329907271 @default.
- W3032990727 hasOpenAccess W3032990727 @default.
- W3032990727 hasPrimaryLocation W30329907271 @default.
- W3032990727 hasRelatedWork W2050635624 @default.
- W3032990727 hasRelatedWork W2054026175 @default.
- W3032990727 hasRelatedWork W2091753323 @default.
- W3032990727 hasRelatedWork W2101447046 @default.
- W3032990727 hasRelatedWork W2129428289 @default.
- W3032990727 hasRelatedWork W2168037874 @default.
- W3032990727 hasRelatedWork W2347374138 @default.
- W3032990727 hasRelatedWork W2750434199 @default.
- W3032990727 hasRelatedWork W3180134568 @default.
- W3032990727 hasRelatedWork W64303689 @default.
- W3032990727 isParatext "false" @default.
- W3032990727 isRetracted "false" @default.
- W3032990727 magId "3032990727" @default.
- W3032990727 workType "article" @default.