Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033033107> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3033033107 endingPage "109896" @default.
- W3033033107 startingPage "109896" @default.
- W3033033107 abstract "The aim of this study was to predict early delirium after microvascular decompression using machine learning. Retrospective cohort study. Second Hospital of Lanzhou University. This study involved 912 patients with primary cranial nerve disease who had undergone microvascular decompression surgery between July 2007 and June 2018. None. We collected data on preoperative, intraoperative, and postoperative variables. Statistical analysis was conducted in R, and the model was constructed with python. The machine learning model was run using the following models: decision tree, logistic regression, random forest, gbm, and GBDT models. 912 patients were enrolled in this study, 221 of which (24.2%) had postoperative delirium. The machine learning Gbm algorithm finds that the first five factors accounting for the weight of postoperative delirium are CBZ use duration, hgb, serum CBZ level measured 24 h before surgery, preoperative CBZ dose, and BUN. Through machine learning five algorithms to build prediction models, we found the following values for the training group: Logistic algorithm (AUC value = 0.925, accuracy = 0.900); Forest algorithm (AUC value = 0.994, accuracy = 0.948); GradientBoosting algorithm (AUC value = 0.994, accuracy = 0.970) and DecisionTree algorithm (aucvalue = 0.902, accuracy = 0.861); Gbm algorithm (AUC value = 0.979, accuracy = 0.944). The test group had the following values: Logistic algorithm (aucvalue = 0.920, accuracy = 0.901); DecisionTree algorithm (aucvalue = 0.888, accuracy = 0.883); Forest algorithm (aucvalue = 0.963, accuracy = 0.909); GradientBoostingc algorithm (aucvalue = 0.962, accuracy = 0.923); Gbm algorithm (AUC value = 0.956, accuracy = 0.920). Machine learning algorithms predict the occurrence of delirium after microvascular decompression with an accuracy rate of 96.7%. And the major risk factors for the development of post-cardiac delirium are carbamazepine, hgb, and BUN." @default.
- W3033033107 created "2020-06-12" @default.
- W3033033107 creator A5009826663 @default.
- W3033033107 creator A5018863416 @default.
- W3033033107 creator A5039360390 @default.
- W3033033107 creator A5057382778 @default.
- W3033033107 creator A5061315620 @default.
- W3033033107 creator A5062500008 @default.
- W3033033107 date "2020-11-01" @default.
- W3033033107 modified "2023-10-14" @default.
- W3033033107 title "Predicting postoperative delirium after microvascular decompression surgery with machine learning" @default.
- W3033033107 cites W1931998430 @default.
- W3033033107 cites W2004819318 @default.
- W3033033107 cites W2067426033 @default.
- W3033033107 cites W2121099761 @default.
- W3033033107 cites W2125536358 @default.
- W3033033107 cites W2128702963 @default.
- W3033033107 cites W2131273635 @default.
- W3033033107 cites W2334653595 @default.
- W3033033107 cites W2487467921 @default.
- W3033033107 cites W2612685973 @default.
- W3033033107 cites W2617669016 @default.
- W3033033107 cites W2731899572 @default.
- W3033033107 cites W2759229677 @default.
- W3033033107 cites W2883639436 @default.
- W3033033107 cites W2883684980 @default.
- W3033033107 cites W2900559149 @default.
- W3033033107 cites W2907782186 @default.
- W3033033107 cites W2919115771 @default.
- W3033033107 cites W2942054238 @default.
- W3033033107 cites W2953166525 @default.
- W3033033107 cites W3105445034 @default.
- W3033033107 doi "https://doi.org/10.1016/j.jclinane.2020.109896" @default.
- W3033033107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32504969" @default.
- W3033033107 hasPublicationYear "2020" @default.
- W3033033107 type Work @default.
- W3033033107 sameAs 3033033107 @default.
- W3033033107 citedByCount "27" @default.
- W3033033107 countsByYear W30330331072020 @default.
- W3033033107 countsByYear W30330331072021 @default.
- W3033033107 countsByYear W30330331072022 @default.
- W3033033107 countsByYear W30330331072023 @default.
- W3033033107 crossrefType "journal-article" @default.
- W3033033107 hasAuthorship W3033033107A5009826663 @default.
- W3033033107 hasAuthorship W3033033107A5018863416 @default.
- W3033033107 hasAuthorship W3033033107A5039360390 @default.
- W3033033107 hasAuthorship W3033033107A5057382778 @default.
- W3033033107 hasAuthorship W3033033107A5061315620 @default.
- W3033033107 hasAuthorship W3033033107A5062500008 @default.
- W3033033107 hasConcept C11413529 @default.
- W3033033107 hasConcept C119857082 @default.
- W3033033107 hasConcept C126322002 @default.
- W3033033107 hasConcept C141071460 @default.
- W3033033107 hasConcept C151956035 @default.
- W3033033107 hasConcept C154945302 @default.
- W3033033107 hasConcept C169258074 @default.
- W3033033107 hasConcept C177713679 @default.
- W3033033107 hasConcept C2779480328 @default.
- W3033033107 hasConcept C2779753318 @default.
- W3033033107 hasConcept C41008148 @default.
- W3033033107 hasConcept C71924100 @default.
- W3033033107 hasConceptScore W3033033107C11413529 @default.
- W3033033107 hasConceptScore W3033033107C119857082 @default.
- W3033033107 hasConceptScore W3033033107C126322002 @default.
- W3033033107 hasConceptScore W3033033107C141071460 @default.
- W3033033107 hasConceptScore W3033033107C151956035 @default.
- W3033033107 hasConceptScore W3033033107C154945302 @default.
- W3033033107 hasConceptScore W3033033107C169258074 @default.
- W3033033107 hasConceptScore W3033033107C177713679 @default.
- W3033033107 hasConceptScore W3033033107C2779480328 @default.
- W3033033107 hasConceptScore W3033033107C2779753318 @default.
- W3033033107 hasConceptScore W3033033107C41008148 @default.
- W3033033107 hasConceptScore W3033033107C71924100 @default.
- W3033033107 hasFunder F4320321001 @default.
- W3033033107 hasLocation W30330331071 @default.
- W3033033107 hasOpenAccess W3033033107 @default.
- W3033033107 hasPrimaryLocation W30330331071 @default.
- W3033033107 hasRelatedWork W2076264651 @default.
- W3033033107 hasRelatedWork W2911455822 @default.
- W3033033107 hasRelatedWork W3198710639 @default.
- W3033033107 hasRelatedWork W4212963941 @default.
- W3033033107 hasRelatedWork W4239706975 @default.
- W3033033107 hasRelatedWork W4283313480 @default.
- W3033033107 hasRelatedWork W4285237370 @default.
- W3033033107 hasRelatedWork W4308191010 @default.
- W3033033107 hasRelatedWork W4321636153 @default.
- W3033033107 hasRelatedWork W4323021782 @default.
- W3033033107 hasVolume "66" @default.
- W3033033107 isParatext "false" @default.
- W3033033107 isRetracted "false" @default.
- W3033033107 magId "3033033107" @default.
- W3033033107 workType "article" @default.