Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033110441> ?p ?o ?g. }
- W3033110441 endingPage "1488" @default.
- W3033110441 startingPage "1474" @default.
- W3033110441 abstract "<italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Visible Thermal Person Re-Identification</i> (VTReID) is a cross-modality retrieval problem in computer vision. Accurate VTReID is very challenging due to large modality discrepancies. In this work, we design a novel <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Multi-Patch Matching Network</i> (MPMN) framework to simultaneously mitigate the heterogeneity of coarse-grained and fine-grained visual semantics. In view of cross-modality matching, we verify that aligning modality distributions of the original features is likely to suffer from the selective alignment behavior, i.e., only focuses on easiest dimensions or subspaces. Inspired by adversarial learning, we propose a new <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Multi-Patch Modality Alignment</i> (MPMA) loss to jointly balance and reduce the modality discrepancies of multi-patch features by mining hard subspaces and abandoning easy subspaces. Since multi-patch features are potentially complementary to each other, the semantic correlations between different patches should be exploited during training. Motivated by knowledge distillation, we put forward a new <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Cross-Patch Correlation Distillation</i> (CPCD) loss to transfer the semantic knowledges across different patches. To balance multi-patch tasks, an effective <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Patch-Aware Priority Attention</i> (PAPA) method is further introduced to dynamically prioritize hard patch tasks during training. This paper experimentally demonstrates the effectiveness of the proposed methods, achieving superior performance over the state-of-the-art methods on RegDB and SYSU-MM01 datasets." @default.
- W3033110441 created "2020-06-12" @default.
- W3033110441 creator A5009318707 @default.
- W3033110441 creator A5037873650 @default.
- W3033110441 creator A5046717491 @default.
- W3033110441 creator A5052100570 @default.
- W3033110441 creator A5053619472 @default.
- W3033110441 creator A5064842058 @default.
- W3033110441 creator A5086862171 @default.
- W3033110441 date "2021-01-01" @default.
- W3033110441 modified "2023-10-09" @default.
- W3033110441 title "Deep Multi-Patch Matching Network for Visible Thermal Person Re-Identification" @default.
- W3033110441 cites W2108598243 @default.
- W3033110441 cites W2194775991 @default.
- W3033110441 cites W2208819768 @default.
- W3033110441 cites W2512032049 @default.
- W3033110441 cites W2568415986 @default.
- W3033110441 cites W2596603442 @default.
- W3033110441 cites W2606377603 @default.
- W3033110441 cites W2765440071 @default.
- W3033110441 cites W2777534232 @default.
- W3033110441 cites W2793966073 @default.
- W3033110441 cites W2808134123 @default.
- W3033110441 cites W2808260522 @default.
- W3033110441 cites W2887057599 @default.
- W3033110441 cites W2891175865 @default.
- W3033110441 cites W2894786240 @default.
- W3033110441 cites W2904949947 @default.
- W3033110441 cites W2942517729 @default.
- W3033110441 cites W2946574625 @default.
- W3033110441 cites W2948490177 @default.
- W3033110441 cites W2953003997 @default.
- W3033110441 cites W2954090673 @default.
- W3033110441 cites W2954773727 @default.
- W3033110441 cites W2962691289 @default.
- W3033110441 cites W2963180826 @default.
- W3033110441 cites W2963597983 @default.
- W3033110441 cites W2963809521 @default.
- W3033110441 cites W2964163358 @default.
- W3033110441 cites W2979931389 @default.
- W3033110441 cites W2979938149 @default.
- W3033110441 cites W2981396627 @default.
- W3033110441 cites W2985033611 @default.
- W3033110441 cites W2985951359 @default.
- W3033110441 cites W2988823324 @default.
- W3033110441 cites W2994818707 @default.
- W3033110441 cites W2998508940 @default.
- W3033110441 cites W3010072653 @default.
- W3033110441 cites W3100506510 @default.
- W3033110441 doi "https://doi.org/10.1109/tmm.2020.2999180" @default.
- W3033110441 hasPublicationYear "2021" @default.
- W3033110441 type Work @default.
- W3033110441 sameAs 3033110441 @default.
- W3033110441 citedByCount "23" @default.
- W3033110441 countsByYear W30331104412020 @default.
- W3033110441 countsByYear W30331104412021 @default.
- W3033110441 countsByYear W30331104412022 @default.
- W3033110441 countsByYear W30331104412023 @default.
- W3033110441 crossrefType "journal-article" @default.
- W3033110441 hasAuthorship W3033110441A5009318707 @default.
- W3033110441 hasAuthorship W3033110441A5037873650 @default.
- W3033110441 hasAuthorship W3033110441A5046717491 @default.
- W3033110441 hasAuthorship W3033110441A5052100570 @default.
- W3033110441 hasAuthorship W3033110441A5053619472 @default.
- W3033110441 hasAuthorship W3033110441A5064842058 @default.
- W3033110441 hasAuthorship W3033110441A5086862171 @default.
- W3033110441 hasConcept C105795698 @default.
- W3033110441 hasConcept C116834253 @default.
- W3033110441 hasConcept C119857082 @default.
- W3033110441 hasConcept C12362212 @default.
- W3033110441 hasConcept C154945302 @default.
- W3033110441 hasConcept C165064840 @default.
- W3033110441 hasConcept C184337299 @default.
- W3033110441 hasConcept C199360897 @default.
- W3033110441 hasConcept C23123220 @default.
- W3033110441 hasConcept C2524010 @default.
- W3033110441 hasConcept C2780226545 @default.
- W3033110441 hasConcept C32834561 @default.
- W3033110441 hasConcept C33923547 @default.
- W3033110441 hasConcept C41008148 @default.
- W3033110441 hasConcept C59822182 @default.
- W3033110441 hasConcept C86803240 @default.
- W3033110441 hasConceptScore W3033110441C105795698 @default.
- W3033110441 hasConceptScore W3033110441C116834253 @default.
- W3033110441 hasConceptScore W3033110441C119857082 @default.
- W3033110441 hasConceptScore W3033110441C12362212 @default.
- W3033110441 hasConceptScore W3033110441C154945302 @default.
- W3033110441 hasConceptScore W3033110441C165064840 @default.
- W3033110441 hasConceptScore W3033110441C184337299 @default.
- W3033110441 hasConceptScore W3033110441C199360897 @default.
- W3033110441 hasConceptScore W3033110441C23123220 @default.
- W3033110441 hasConceptScore W3033110441C2524010 @default.
- W3033110441 hasConceptScore W3033110441C2780226545 @default.
- W3033110441 hasConceptScore W3033110441C32834561 @default.
- W3033110441 hasConceptScore W3033110441C33923547 @default.
- W3033110441 hasConceptScore W3033110441C41008148 @default.
- W3033110441 hasConceptScore W3033110441C59822182 @default.
- W3033110441 hasConceptScore W3033110441C86803240 @default.