Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033127816> ?p ?o ?g. }
- W3033127816 abstract "Real world datasets often contain noisy labels, and learning from such datasets using standard classification approaches may not produce the desired performance. In this paper, we propose a Gaussian Mixture Discriminant Analysis (GMDA) with noisy label for each class. We introduce flipping probability and class probability and use EM algorithms to solve the discriminant problem with label noise. We also provide the detail proofs of convergence. Experimental results on synthetic and real-world datasets show that the proposed approach notably outperforms other four state-of-art methods." @default.
- W3033127816 created "2020-06-12" @default.
- W3033127816 creator A5006186675 @default.
- W3033127816 creator A5055971456 @default.
- W3033127816 creator A5065504323 @default.
- W3033127816 creator A5076944498 @default.
- W3033127816 date "2022-01-25" @default.
- W3033127816 modified "2023-09-23" @default.
- W3033127816 title "GMM Discriminant Analysis with Noisy Label for Each Class" @default.
- W3033127816 cites W1480376833 @default.
- W3033127816 cites W1540007258 @default.
- W3033127816 cites W1554663460 @default.
- W3033127816 cites W1580256954 @default.
- W3033127816 cites W1768290534 @default.
- W3033127816 cites W1866935739 @default.
- W3033127816 cites W1956647075 @default.
- W3033127816 cites W1973598714 @default.
- W3033127816 cites W1985690171 @default.
- W3033127816 cites W1994550352 @default.
- W3033127816 cites W1995897489 @default.
- W3033127816 cites W2021885139 @default.
- W3033127816 cites W2049633694 @default.
- W3033127816 cites W2078124810 @default.
- W3033127816 cites W2095955281 @default.
- W3033127816 cites W2102348129 @default.
- W3033127816 cites W2107189314 @default.
- W3033127816 cites W2111333570 @default.
- W3033127816 cites W2122496402 @default.
- W3033127816 cites W2130656427 @default.
- W3033127816 cites W2133227149 @default.
- W3033127816 cites W2137446405 @default.
- W3033127816 cites W2142279020 @default.
- W3033127816 cites W2153908768 @default.
- W3033127816 cites W2167460663 @default.
- W3033127816 cites W2169073444 @default.
- W3033127816 cites W2187517819 @default.
- W3033127816 cites W2200679619 @default.
- W3033127816 cites W2490901831 @default.
- W3033127816 cites W2889476950 @default.
- W3033127816 cites W2981952612 @default.
- W3033127816 cites W2990019157 @default.
- W3033127816 cites W2996108195 @default.
- W3033127816 cites W3011290748 @default.
- W3033127816 cites W3100570787 @default.
- W3033127816 cites W3120740533 @default.
- W3033127816 cites W614324124 @default.
- W3033127816 cites W72116547 @default.
- W3033127816 doi "https://doi.org/10.48550/arxiv.2201.10242" @default.
- W3033127816 hasPublicationYear "2022" @default.
- W3033127816 type Work @default.
- W3033127816 sameAs 3033127816 @default.
- W3033127816 citedByCount "1" @default.
- W3033127816 countsByYear W30331278162021 @default.
- W3033127816 crossrefType "posted-content" @default.
- W3033127816 hasAuthorship W3033127816A5006186675 @default.
- W3033127816 hasAuthorship W3033127816A5055971456 @default.
- W3033127816 hasAuthorship W3033127816A5065504323 @default.
- W3033127816 hasAuthorship W3033127816A5076944498 @default.
- W3033127816 hasBestOaLocation W30331278161 @default.
- W3033127816 hasConcept C115961682 @default.
- W3033127816 hasConcept C119857082 @default.
- W3033127816 hasConcept C121332964 @default.
- W3033127816 hasConcept C153180895 @default.
- W3033127816 hasConcept C154945302 @default.
- W3033127816 hasConcept C162324750 @default.
- W3033127816 hasConcept C163716315 @default.
- W3033127816 hasConcept C2777212361 @default.
- W3033127816 hasConcept C2777303404 @default.
- W3033127816 hasConcept C41008148 @default.
- W3033127816 hasConcept C4199805 @default.
- W3033127816 hasConcept C50522688 @default.
- W3033127816 hasConcept C61224824 @default.
- W3033127816 hasConcept C62520636 @default.
- W3033127816 hasConcept C69738355 @default.
- W3033127816 hasConcept C78397625 @default.
- W3033127816 hasConcept C99498987 @default.
- W3033127816 hasConceptScore W3033127816C115961682 @default.
- W3033127816 hasConceptScore W3033127816C119857082 @default.
- W3033127816 hasConceptScore W3033127816C121332964 @default.
- W3033127816 hasConceptScore W3033127816C153180895 @default.
- W3033127816 hasConceptScore W3033127816C154945302 @default.
- W3033127816 hasConceptScore W3033127816C162324750 @default.
- W3033127816 hasConceptScore W3033127816C163716315 @default.
- W3033127816 hasConceptScore W3033127816C2777212361 @default.
- W3033127816 hasConceptScore W3033127816C2777303404 @default.
- W3033127816 hasConceptScore W3033127816C41008148 @default.
- W3033127816 hasConceptScore W3033127816C4199805 @default.
- W3033127816 hasConceptScore W3033127816C50522688 @default.
- W3033127816 hasConceptScore W3033127816C61224824 @default.
- W3033127816 hasConceptScore W3033127816C62520636 @default.
- W3033127816 hasConceptScore W3033127816C69738355 @default.
- W3033127816 hasConceptScore W3033127816C78397625 @default.
- W3033127816 hasConceptScore W3033127816C99498987 @default.
- W3033127816 hasLocation W30331278161 @default.
- W3033127816 hasOpenAccess W3033127816 @default.
- W3033127816 hasPrimaryLocation W30331278161 @default.
- W3033127816 hasRelatedWork W1530636965 @default.
- W3033127816 hasRelatedWork W2025991752 @default.
- W3033127816 hasRelatedWork W2124900067 @default.
- W3033127816 hasRelatedWork W2134472250 @default.