Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033135512> ?p ?o ?g. }
- W3033135512 endingPage "936" @default.
- W3033135512 startingPage "936" @default.
- W3033135512 abstract "Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature." @default.
- W3033135512 created "2020-06-12" @default.
- W3033135512 creator A5006488537 @default.
- W3033135512 creator A5016475110 @default.
- W3033135512 creator A5050579174 @default.
- W3033135512 creator A5064081550 @default.
- W3033135512 creator A5067245090 @default.
- W3033135512 date "2020-06-08" @default.
- W3033135512 modified "2023-10-01" @default.
- W3033135512 title "Monarch Butterfly Optimization Based Convolutional Neural Network Design" @default.
- W3033135512 cites W145972087 @default.
- W3033135512 cites W1547198977 @default.
- W3033135512 cites W1576660662 @default.
- W3033135512 cites W1579299488 @default.
- W3033135512 cites W1584703815 @default.
- W3033135512 cites W2003890325 @default.
- W3033135512 cites W2004915807 @default.
- W3033135512 cites W2019645756 @default.
- W3033135512 cites W2022508996 @default.
- W3033135512 cites W2037917527 @default.
- W3033135512 cites W2061438946 @default.
- W3033135512 cites W2064663555 @default.
- W3033135512 cites W2097117768 @default.
- W3033135512 cites W2101926813 @default.
- W3033135512 cites W2103212315 @default.
- W3033135512 cites W2112796928 @default.
- W3033135512 cites W2113325037 @default.
- W3033135512 cites W2144317842 @default.
- W3033135512 cites W2145287260 @default.
- W3033135512 cites W2152195021 @default.
- W3033135512 cites W2157745054 @default.
- W3033135512 cites W2290883490 @default.
- W3033135512 cites W2325790065 @default.
- W3033135512 cites W2474290527 @default.
- W3033135512 cites W2552398040 @default.
- W3033135512 cites W2606006859 @default.
- W3033135512 cites W2610837804 @default.
- W3033135512 cites W2657756487 @default.
- W3033135512 cites W2731488294 @default.
- W3033135512 cites W2755520760 @default.
- W3033135512 cites W2776601846 @default.
- W3033135512 cites W2799991731 @default.
- W3033135512 cites W2807193354 @default.
- W3033135512 cites W2807412638 @default.
- W3033135512 cites W2808214731 @default.
- W3033135512 cites W2889074766 @default.
- W3033135512 cites W2896804239 @default.
- W3033135512 cites W2897188827 @default.
- W3033135512 cites W2907651787 @default.
- W3033135512 cites W2911572938 @default.
- W3033135512 cites W2947683354 @default.
- W3033135512 cites W2952389999 @default.
- W3033135512 cites W2952822558 @default.
- W3033135512 cites W2954020051 @default.
- W3033135512 cites W2963446712 @default.
- W3033135512 cites W2963588848 @default.
- W3033135512 cites W2963658737 @default.
- W3033135512 cites W2968495388 @default.
- W3033135512 cites W2968506281 @default.
- W3033135512 cites W2978049011 @default.
- W3033135512 cites W2983249795 @default.
- W3033135512 cites W2983575492 @default.
- W3033135512 cites W2983873840 @default.
- W3033135512 cites W3004983395 @default.
- W3033135512 cites W3012330071 @default.
- W3033135512 cites W3105346980 @default.
- W3033135512 cites W341879454 @default.
- W3033135512 cites W1533784027 @default.
- W3033135512 doi "https://doi.org/10.3390/math8060936" @default.
- W3033135512 hasPublicationYear "2020" @default.
- W3033135512 type Work @default.
- W3033135512 sameAs 3033135512 @default.
- W3033135512 citedByCount "57" @default.
- W3033135512 countsByYear W30331355122020 @default.
- W3033135512 countsByYear W30331355122021 @default.
- W3033135512 countsByYear W30331355122022 @default.
- W3033135512 countsByYear W30331355122023 @default.
- W3033135512 crossrefType "journal-article" @default.
- W3033135512 hasAuthorship W3033135512A5006488537 @default.
- W3033135512 hasAuthorship W3033135512A5016475110 @default.
- W3033135512 hasAuthorship W3033135512A5050579174 @default.
- W3033135512 hasAuthorship W3033135512A5064081550 @default.
- W3033135512 hasAuthorship W3033135512A5067245090 @default.
- W3033135512 hasBestOaLocation W30331355121 @default.
- W3033135512 hasConcept C119857082 @default.
- W3033135512 hasConcept C13280743 @default.
- W3033135512 hasConcept C153180895 @default.
- W3033135512 hasConcept C154945302 @default.
- W3033135512 hasConcept C185798385 @default.
- W3033135512 hasConcept C205649164 @default.
- W3033135512 hasConcept C41008148 @default.
- W3033135512 hasConcept C81363708 @default.
- W3033135512 hasConcept C8642999 @default.
- W3033135512 hasConceptScore W3033135512C119857082 @default.
- W3033135512 hasConceptScore W3033135512C13280743 @default.
- W3033135512 hasConceptScore W3033135512C153180895 @default.
- W3033135512 hasConceptScore W3033135512C154945302 @default.
- W3033135512 hasConceptScore W3033135512C185798385 @default.