Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033137211> ?p ?o ?g. }
- W3033137211 endingPage "7470" @default.
- W3033137211 startingPage "7457" @default.
- W3033137211 abstract "Without phase information of the measured field data, the phaseless data inverse scattering problems (PD-ISPs) counter more serious nonlinearity and ill-posedness compared with full data ISPs (FD-ISPs). In this article, we propose a learning-based inversion approach in the frame of the U-net convolutional neural network (CNN) to quantitatively image unknown scatterers located in homogeneous background from the amplitude-only measured total field (also denoted PD). Three training schemes with different inputs to the U-net CNN are proposed and compared, i.e., the direct inversion scheme (DIS) with phaseless total field data, retrieval dominant induced currents by the Levenberg-Marquardt (LM) method (PD-DICs), and PD with contrast source inversion (PD-CSI) scheme. We also demonstrate the setup of training data and compare the performance of the three schemes using both numerical and experimental tests. It is found that the proposed PD-CSI and PD-DICs perform better in terms of accuracy, generalization ability, and robustness compared with DIS. PD-CSI has the strongest capability to tackle with PD-ISPs, which outperforms the PD-DICs and DIS." @default.
- W3033137211 created "2020-06-12" @default.
- W3033137211 creator A5005938666 @default.
- W3033137211 creator A5015528360 @default.
- W3033137211 creator A5033992564 @default.
- W3033137211 creator A5038032064 @default.
- W3033137211 date "2020-11-01" @default.
- W3033137211 modified "2023-10-17" @default.
- W3033137211 title "Deep Learning-Based Inversion Methods for Solving Inverse Scattering Problems With Phaseless Data" @default.
- W3033137211 cites W141759635 @default.
- W3033137211 cites W1983322501 @default.
- W3033137211 cites W1988483973 @default.
- W3033137211 cites W2003147468 @default.
- W3033137211 cites W2004054624 @default.
- W3033137211 cites W2035489376 @default.
- W3033137211 cites W2050806082 @default.
- W3033137211 cites W2057445777 @default.
- W3033137211 cites W2079375896 @default.
- W3033137211 cites W2080376981 @default.
- W3033137211 cites W2087077577 @default.
- W3033137211 cites W2088213824 @default.
- W3033137211 cites W2091027394 @default.
- W3033137211 cites W2094322451 @default.
- W3033137211 cites W2100707489 @default.
- W3033137211 cites W2102033999 @default.
- W3033137211 cites W2112878345 @default.
- W3033137211 cites W2113481361 @default.
- W3033137211 cites W2132259582 @default.
- W3033137211 cites W2135906989 @default.
- W3033137211 cites W2136436000 @default.
- W3033137211 cites W2137278936 @default.
- W3033137211 cites W2139785619 @default.
- W3033137211 cites W2143368686 @default.
- W3033137211 cites W2144559213 @default.
- W3033137211 cites W2152687337 @default.
- W3033137211 cites W2160992482 @default.
- W3033137211 cites W2162604174 @default.
- W3033137211 cites W2171394717 @default.
- W3033137211 cites W2171566083 @default.
- W3033137211 cites W2535155561 @default.
- W3033137211 cites W2748124092 @default.
- W3033137211 cites W2769250359 @default.
- W3033137211 cites W2800441593 @default.
- W3033137211 cites W2894120608 @default.
- W3033137211 cites W2918772560 @default.
- W3033137211 cites W2946569826 @default.
- W3033137211 cites W2949076167 @default.
- W3033137211 cites W2964269625 @default.
- W3033137211 cites W3982126 @default.
- W3033137211 cites W4206366900 @default.
- W3033137211 cites W4243613133 @default.
- W3033137211 doi "https://doi.org/10.1109/tap.2020.2998171" @default.
- W3033137211 hasPublicationYear "2020" @default.
- W3033137211 type Work @default.
- W3033137211 sameAs 3033137211 @default.
- W3033137211 citedByCount "57" @default.
- W3033137211 countsByYear W30331372112021 @default.
- W3033137211 countsByYear W30331372112022 @default.
- W3033137211 countsByYear W30331372112023 @default.
- W3033137211 crossrefType "journal-article" @default.
- W3033137211 hasAuthorship W3033137211A5005938666 @default.
- W3033137211 hasAuthorship W3033137211A5015528360 @default.
- W3033137211 hasAuthorship W3033137211A5033992564 @default.
- W3033137211 hasAuthorship W3033137211A5038032064 @default.
- W3033137211 hasConcept C102519508 @default.
- W3033137211 hasConcept C104317684 @default.
- W3033137211 hasConcept C109007969 @default.
- W3033137211 hasConcept C11413529 @default.
- W3033137211 hasConcept C121332964 @default.
- W3033137211 hasConcept C127313418 @default.
- W3033137211 hasConcept C134306372 @default.
- W3033137211 hasConcept C135252773 @default.
- W3033137211 hasConcept C151730666 @default.
- W3033137211 hasConcept C154945302 @default.
- W3033137211 hasConcept C158622935 @default.
- W3033137211 hasConcept C174558057 @default.
- W3033137211 hasConcept C185592680 @default.
- W3033137211 hasConcept C1893757 @default.
- W3033137211 hasConcept C33923547 @default.
- W3033137211 hasConcept C41008148 @default.
- W3033137211 hasConcept C55493867 @default.
- W3033137211 hasConcept C62520636 @default.
- W3033137211 hasConcept C63479239 @default.
- W3033137211 hasConcept C81363708 @default.
- W3033137211 hasConcept C81793267 @default.
- W3033137211 hasConceptScore W3033137211C102519508 @default.
- W3033137211 hasConceptScore W3033137211C104317684 @default.
- W3033137211 hasConceptScore W3033137211C109007969 @default.
- W3033137211 hasConceptScore W3033137211C11413529 @default.
- W3033137211 hasConceptScore W3033137211C121332964 @default.
- W3033137211 hasConceptScore W3033137211C127313418 @default.
- W3033137211 hasConceptScore W3033137211C134306372 @default.
- W3033137211 hasConceptScore W3033137211C135252773 @default.
- W3033137211 hasConceptScore W3033137211C151730666 @default.
- W3033137211 hasConceptScore W3033137211C154945302 @default.
- W3033137211 hasConceptScore W3033137211C158622935 @default.
- W3033137211 hasConceptScore W3033137211C174558057 @default.
- W3033137211 hasConceptScore W3033137211C185592680 @default.