Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033146475> ?p ?o ?g. }
- W3033146475 abstract "Maximum likelihood (ML) is a well established method for general parameter estimation. However in its original formulation, ML applied to the image reconstruction problem in Optical Tomography has two serious inadequacies. One is that ML is incapable of distinguishing noise in the data, leading to spurious artifact in the image. The other drawback is that ML does not provide a way to include any prior information about the object that might be available. Noise regularisation is a major concern in imaging and ill-posed inverse problems in general. The aim of this research is to improve the existing imaging algorithm for Optical Tomography. In this thesis we have taken two approaches to the problem. In the first approach we introduce a full maximum likelihood (FML) method which estimates the noise level concurrently. We show that FML in combination with a proposed method of hold-out validation is able to determine a nearly optimal estimate without overfitting to the noise in the data. In the second approach, we will propose a Bayesian method that uses the so-called normal- Wishart density as a parametric prior. We will show that for low degrees of freedom this choice of prior has robust imaging properties and that in some cases the prior can even increase the image resolution (compared to the ML image) but still retain good suppression of noise. We show how graphical modelling can assist in building complex probabilistic models and give examples for the implementation using a developed C++ library. Throughout the thesis, methods are validated by reconstruction examples using simulated data. In the final chapter, we will also present images from real experimental data." @default.
- W3033146475 created "2020-06-12" @default.
- W3033146475 creator A5079771818 @default.
- W3033146475 date "2000-01-01" @default.
- W3033146475 modified "2023-09-23" @default.
- W3033146475 title "Towards a Bayesian framework for optical tomography" @default.
- W3033146475 cites W138212814 @default.
- W3033146475 cites W1483513243 @default.
- W3033146475 cites W1497561060 @default.
- W3033146475 cites W1500564636 @default.
- W3033146475 cites W1501233054 @default.
- W3033146475 cites W1510278238 @default.
- W3033146475 cites W1513075521 @default.
- W3033146475 cites W1523669306 @default.
- W3033146475 cites W1554663460 @default.
- W3033146475 cites W1556476835 @default.
- W3033146475 cites W1573293896 @default.
- W3033146475 cites W1576278180 @default.
- W3033146475 cites W1672766972 @default.
- W3033146475 cites W1756567709 @default.
- W3033146475 cites W1760195827 @default.
- W3033146475 cites W181611762 @default.
- W3033146475 cites W1964541391 @default.
- W3033146475 cites W1966078249 @default.
- W3033146475 cites W1966411342 @default.
- W3033146475 cites W1969460975 @default.
- W3033146475 cites W1970041516 @default.
- W3033146475 cites W1970660008 @default.
- W3033146475 cites W1970991589 @default.
- W3033146475 cites W1972420594 @default.
- W3033146475 cites W1973039295 @default.
- W3033146475 cites W1974515299 @default.
- W3033146475 cites W1977699214 @default.
- W3033146475 cites W1978949570 @default.
- W3033146475 cites W1981603116 @default.
- W3033146475 cites W1982553899 @default.
- W3033146475 cites W1982566190 @default.
- W3033146475 cites W1986485449 @default.
- W3033146475 cites W1987172404 @default.
- W3033146475 cites W1988684120 @default.
- W3033146475 cites W1989541248 @default.
- W3033146475 cites W1996207141 @default.
- W3033146475 cites W2003657584 @default.
- W3033146475 cites W2005571224 @default.
- W3033146475 cites W2007318338 @default.
- W3033146475 cites W2007748609 @default.
- W3033146475 cites W2011550515 @default.
- W3033146475 cites W2012202558 @default.
- W3033146475 cites W2016795639 @default.
- W3033146475 cites W2017624220 @default.
- W3033146475 cites W2020528079 @default.
- W3033146475 cites W2020999234 @default.
- W3033146475 cites W2026592776 @default.
- W3033146475 cites W2029240964 @default.
- W3033146475 cites W2029763894 @default.
- W3033146475 cites W2031604650 @default.
- W3033146475 cites W2032231305 @default.
- W3033146475 cites W2033106066 @default.
- W3033146475 cites W2035042171 @default.
- W3033146475 cites W2039082096 @default.
- W3033146475 cites W2044315435 @default.
- W3033146475 cites W2045656233 @default.
- W3033146475 cites W2047341764 @default.
- W3033146475 cites W2047735599 @default.
- W3033146475 cites W2047922146 @default.
- W3033146475 cites W2050973816 @default.
- W3033146475 cites W2051492340 @default.
- W3033146475 cites W2052665148 @default.
- W3033146475 cites W2053098792 @default.
- W3033146475 cites W2053356496 @default.
- W3033146475 cites W2053358046 @default.
- W3033146475 cites W2053559912 @default.
- W3033146475 cites W2054380457 @default.
- W3033146475 cites W2056888255 @default.
- W3033146475 cites W2059882314 @default.
- W3033146475 cites W2066301447 @default.
- W3033146475 cites W2068484625 @default.
- W3033146475 cites W2070154783 @default.
- W3033146475 cites W2072907579 @default.
- W3033146475 cites W2074948889 @default.
- W3033146475 cites W2076414589 @default.
- W3033146475 cites W2077204104 @default.
- W3033146475 cites W2079255493 @default.
- W3033146475 cites W2080744942 @default.
- W3033146475 cites W2083017679 @default.
- W3033146475 cites W2087051053 @default.
- W3033146475 cites W2087433160 @default.
- W3033146475 cites W2088378927 @default.
- W3033146475 cites W2092746253 @default.
- W3033146475 cites W2094270569 @default.
- W3033146475 cites W2103017125 @default.
- W3033146475 cites W2104120186 @default.
- W3033146475 cites W2108174537 @default.
- W3033146475 cites W2108386973 @default.
- W3033146475 cites W2109911863 @default.
- W3033146475 cites W2110993835 @default.
- W3033146475 cites W2116305582 @default.
- W3033146475 cites W2117492179 @default.
- W3033146475 cites W2120695425 @default.
- W3033146475 cites W2121307183 @default.