Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033151690> ?p ?o ?g. }
- W3033151690 endingPage "6156" @default.
- W3033151690 startingPage "6135" @default.
- W3033151690 abstract "An unsupervised feature extraction method could effectively address the phenomenon where using a limited number of labelled samples leads to poor hyperspectral image (HSI) classification. Inspired by this method, we have developed a new method based on fusing dual unsupervised features for HSI classification in this paper. First, we used principal component analysis (PCA) to reduce the dimensions of HSI data and obtain the first set of unsupervised features. Then, we got the second set of unsupervised features by adopting the self-taught learning method, which could learn more discriminatory features by making full use of the information of unlabelled samples in the same HSI. Next, we used the correlation canonical analysis (CCA) algorithm to fuse linearly dual unsupervised learning features. Finally, we proved the effectiveness of the features extracted by the proposed algorithm by applying the extreme learning machine (ELM) classifier to evaluate the purposes. Experiments with three widely used real HSI datasets showed good classification performance when the number of training samples was quite limited. This demonstrates that the proposed feature learning method was indeed an effective method for HSI classification." @default.
- W3033151690 created "2020-06-12" @default.
- W3033151690 creator A5027914547 @default.
- W3033151690 creator A5037075182 @default.
- W3033151690 creator A5042231008 @default.
- W3033151690 creator A5057522977 @default.
- W3033151690 creator A5080609124 @default.
- W3033151690 date "2020-06-01" @default.
- W3033151690 modified "2023-10-17" @default.
- W3033151690 title "Dual unsupervised features fusion for hyperspectral image classification" @default.
- W3033151690 cites W1557270207 @default.
- W3033151690 cites W1939429412 @default.
- W3033151690 cites W1976359033 @default.
- W3033151690 cites W1980511770 @default.
- W3033151690 cites W1984990856 @default.
- W3033151690 cites W2018482939 @default.
- W3033151690 cites W2042608483 @default.
- W3033151690 cites W2053852479 @default.
- W3033151690 cites W2098057602 @default.
- W3033151690 cites W2103094532 @default.
- W3033151690 cites W2120641342 @default.
- W3033151690 cites W2128944533 @default.
- W3033151690 cites W2137911531 @default.
- W3033151690 cites W2138645719 @default.
- W3033151690 cites W2145834005 @default.
- W3033151690 cites W2148245426 @default.
- W3033151690 cites W2152057649 @default.
- W3033151690 cites W2155658307 @default.
- W3033151690 cites W2159070926 @default.
- W3033151690 cites W2162698522 @default.
- W3033151690 cites W2179290474 @default.
- W3033151690 cites W2323917763 @default.
- W3033151690 cites W2327302159 @default.
- W3033151690 cites W2405680777 @default.
- W3033151690 cites W2518045224 @default.
- W3033151690 cites W2518815253 @default.
- W3033151690 cites W2570194385 @default.
- W3033151690 cites W2592224809 @default.
- W3033151690 cites W2598997103 @default.
- W3033151690 cites W2600061660 @default.
- W3033151690 cites W2602031553 @default.
- W3033151690 cites W2768309288 @default.
- W3033151690 cites W2768537477 @default.
- W3033151690 cites W2793607269 @default.
- W3033151690 cites W2809113079 @default.
- W3033151690 cites W2809635958 @default.
- W3033151690 cites W2890300983 @default.
- W3033151690 cites W2890306271 @default.
- W3033151690 cites W2895526696 @default.
- W3033151690 cites W2899341612 @default.
- W3033151690 cites W2900614378 @default.
- W3033151690 cites W2901123978 @default.
- W3033151690 cites W2908159312 @default.
- W3033151690 cites W2909192693 @default.
- W3033151690 cites W2909664204 @default.
- W3033151690 cites W2912371366 @default.
- W3033151690 cites W2916206107 @default.
- W3033151690 cites W2921123210 @default.
- W3033151690 cites W2921390441 @default.
- W3033151690 cites W2964283682 @default.
- W3033151690 cites W2987079549 @default.
- W3033151690 cites W2999421733 @default.
- W3033151690 cites W3103753223 @default.
- W3033151690 cites W4200320221 @default.
- W3033151690 cites W4200394859 @default.
- W3033151690 cites W4241384564 @default.
- W3033151690 cites W4362597599 @default.
- W3033151690 doi "https://doi.org/10.1080/01431161.2020.1736729" @default.
- W3033151690 hasPublicationYear "2020" @default.
- W3033151690 type Work @default.
- W3033151690 sameAs 3033151690 @default.
- W3033151690 citedByCount "3" @default.
- W3033151690 countsByYear W30331516902021 @default.
- W3033151690 countsByYear W30331516902022 @default.
- W3033151690 countsByYear W30331516902023 @default.
- W3033151690 crossrefType "journal-article" @default.
- W3033151690 hasAuthorship W3033151690A5027914547 @default.
- W3033151690 hasAuthorship W3033151690A5037075182 @default.
- W3033151690 hasAuthorship W3033151690A5042231008 @default.
- W3033151690 hasAuthorship W3033151690A5057522977 @default.
- W3033151690 hasAuthorship W3033151690A5080609124 @default.
- W3033151690 hasConcept C153180895 @default.
- W3033151690 hasConcept C154945302 @default.
- W3033151690 hasConcept C159078339 @default.
- W3033151690 hasConcept C27438332 @default.
- W3033151690 hasConcept C2780150128 @default.
- W3033151690 hasConcept C41008148 @default.
- W3033151690 hasConcept C50644808 @default.
- W3033151690 hasConcept C52622490 @default.
- W3033151690 hasConcept C8038995 @default.
- W3033151690 hasConcept C95623464 @default.
- W3033151690 hasConceptScore W3033151690C153180895 @default.
- W3033151690 hasConceptScore W3033151690C154945302 @default.
- W3033151690 hasConceptScore W3033151690C159078339 @default.
- W3033151690 hasConceptScore W3033151690C27438332 @default.
- W3033151690 hasConceptScore W3033151690C2780150128 @default.
- W3033151690 hasConceptScore W3033151690C41008148 @default.
- W3033151690 hasConceptScore W3033151690C50644808 @default.