Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033154929> ?p ?o ?g. }
- W3033154929 endingPage "105670" @default.
- W3033154929 startingPage "105659" @default.
- W3033154929 abstract "Deep learning is one of the most unexpected machine learning techniques which is being used in many applications like image classification, image analysis, clinical archives and object recognition. With an extensive utilization of digital images as information in the hospitals, the archives of medical images are growing exponentially. Digital images play a vigorous role in predicting the patient disease intensity and there are vast applications of medical images in diagnosis and investigation. Due to recent developments in imaging technology, classifying medical images in an automatic way is an open research problem for researchers of computer vision. For classifying the medical images according to their relevant classes a most suitable classifier is most important. Image classification is beneficial to predict the appropriate class or category of unknown images. The less discriminating ability and domain-specific categorization are the main drawbacks of low-level features. A semantic gap that exists between features of low-level as machine understanding and features of human understanding as high-level perception. In this research, a novel image representation method is proposed where the algorithm is trained for classifying medical images by deep learning technique. A pre-trained deep convolution neural network method with the fine-tuned approach is applied to the last three layers of deep neural network. The results of the experiment exhibit that our method is best suited to classify various medical images for various body organs. In this manner, data can sum up to other medical classification applications which supports radiologist’s efforts for improving diagnosis." @default.
- W3033154929 created "2020-06-12" @default.
- W3033154929 creator A5017618511 @default.
- W3033154929 creator A5025537111 @default.
- W3033154929 creator A5028834291 @default.
- W3033154929 creator A5038265911 @default.
- W3033154929 creator A5040775371 @default.
- W3033154929 creator A5051346797 @default.
- W3033154929 creator A5059489121 @default.
- W3033154929 creator A5073074011 @default.
- W3033154929 creator A5082741707 @default.
- W3033154929 creator A5089348789 @default.
- W3033154929 date "2020-01-01" @default.
- W3033154929 modified "2023-10-18" @default.
- W3033154929 title "Deep Convolution Neural Network for Big Data Medical Image Classification" @default.
- W3033154929 cites W1568373088 @default.
- W3033154929 cites W1897657709 @default.
- W3033154929 cites W1908634864 @default.
- W3033154929 cites W1915761309 @default.
- W3033154929 cites W1970524109 @default.
- W3033154929 cites W1972498024 @default.
- W3033154929 cites W1980334911 @default.
- W3033154929 cites W2016053056 @default.
- W3033154929 cites W2025423441 @default.
- W3033154929 cites W2036109700 @default.
- W3033154929 cites W2043748212 @default.
- W3033154929 cites W2050418754 @default.
- W3033154929 cites W2060099436 @default.
- W3033154929 cites W2070862086 @default.
- W3033154929 cites W2097117768 @default.
- W3033154929 cites W2102605133 @default.
- W3033154929 cites W2103520586 @default.
- W3033154929 cites W2108635914 @default.
- W3033154929 cites W2123229215 @default.
- W3033154929 cites W2126598020 @default.
- W3033154929 cites W2137227529 @default.
- W3033154929 cites W2139722593 @default.
- W3033154929 cites W2160815625 @default.
- W3033154929 cites W2194775991 @default.
- W3033154929 cites W2212435496 @default.
- W3033154929 cites W2301358467 @default.
- W3033154929 cites W2338271170 @default.
- W3033154929 cites W2343973580 @default.
- W3033154929 cites W2509685700 @default.
- W3033154929 cites W2523168882 @default.
- W3033154929 cites W2525157777 @default.
- W3033154929 cites W2526259914 @default.
- W3033154929 cites W2526511911 @default.
- W3033154929 cites W2557605953 @default.
- W3033154929 cites W2565813159 @default.
- W3033154929 cites W2581082771 @default.
- W3033154929 cites W2592929672 @default.
- W3033154929 cites W2775397406 @default.
- W3033154929 cites W2787759290 @default.
- W3033154929 cites W2790296028 @default.
- W3033154929 cites W2808879369 @default.
- W3033154929 cites W2911893844 @default.
- W3033154929 cites W2963495494 @default.
- W3033154929 cites W2963565427 @default.
- W3033154929 cites W2964995070 @default.
- W3033154929 cites W2999856640 @default.
- W3033154929 cites W3100708836 @default.
- W3033154929 cites W3104258355 @default.
- W3033154929 cites W4230564687 @default.
- W3033154929 cites W948663339 @default.
- W3033154929 doi "https://doi.org/10.1109/access.2020.2998808" @default.
- W3033154929 hasPublicationYear "2020" @default.
- W3033154929 type Work @default.
- W3033154929 sameAs 3033154929 @default.
- W3033154929 citedByCount "42" @default.
- W3033154929 countsByYear W30331549292020 @default.
- W3033154929 countsByYear W30331549292021 @default.
- W3033154929 countsByYear W30331549292022 @default.
- W3033154929 countsByYear W30331549292023 @default.
- W3033154929 crossrefType "journal-article" @default.
- W3033154929 hasAuthorship W3033154929A5017618511 @default.
- W3033154929 hasAuthorship W3033154929A5025537111 @default.
- W3033154929 hasAuthorship W3033154929A5028834291 @default.
- W3033154929 hasAuthorship W3033154929A5038265911 @default.
- W3033154929 hasAuthorship W3033154929A5040775371 @default.
- W3033154929 hasAuthorship W3033154929A5051346797 @default.
- W3033154929 hasAuthorship W3033154929A5059489121 @default.
- W3033154929 hasAuthorship W3033154929A5073074011 @default.
- W3033154929 hasAuthorship W3033154929A5082741707 @default.
- W3033154929 hasAuthorship W3033154929A5089348789 @default.
- W3033154929 hasBestOaLocation W30331549291 @default.
- W3033154929 hasConcept C108583219 @default.
- W3033154929 hasConcept C115961682 @default.
- W3033154929 hasConcept C119857082 @default.
- W3033154929 hasConcept C153180895 @default.
- W3033154929 hasConcept C154945302 @default.
- W3033154929 hasConcept C31601959 @default.
- W3033154929 hasConcept C31972630 @default.
- W3033154929 hasConcept C41008148 @default.
- W3033154929 hasConcept C45347329 @default.
- W3033154929 hasConcept C50644808 @default.
- W3033154929 hasConcept C52622490 @default.
- W3033154929 hasConcept C75294576 @default.