Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033163677> ?p ?o ?g. }
- W3033163677 endingPage "8901" @default.
- W3033163677 startingPage "8881" @default.
- W3033163677 abstract "Railway turnouts require high-performance condition monitoring to prevent disastrous railway accidents. In industrial practice, turnouts' monitoring is usually done by railway workers who visually inspect the operating current curves. This results in huge labor costs and prone to human mistakes. Thus, automating the process of turnouts' monitoring via fault-detection algorithms is imperative. The available turnout field data bring three difficulties to fault detection: 1) large amounts of data do not have any labels; 2) data collected in normal condition have multiple unknown modes; and 3) there are only a small number of samples in some modes. To address these difficulties, this article develops a novel unsupervised fault-detection method by using deep autoencoders, which is composed of an unknown modes' mining stage and a multimode fault-detection stage. First, unknown modes are identified through clustering and employing engineer expertise. Then, an ensemble monitoring model, consisting of local monitoring models developed with individual fault-free modes and a global monitoring model developed by merging the data in all fault-free modes, is proposed to improve the overall fault-detection performance. In addition, to construct local models for the modes with a small number of samples, a one-class transfer learning algorithm is presented. In online monitoring, the decision of a newly arrived sample exploits both local models and the global model. Using both the simulated turnout data and the field data collected from a high-speed railway in China, the efficacy and robustness of the proposed approach are demonstrated by comparisons with other methods." @default.
- W3033163677 created "2020-06-12" @default.
- W3033163677 creator A5011765460 @default.
- W3033163677 creator A5025661578 @default.
- W3033163677 creator A5067368540 @default.
- W3033163677 date "2020-11-01" @default.
- W3033163677 modified "2023-10-08" @default.
- W3033163677 title "An Unsupervised Fault-Detection Method for Railway Turnouts" @default.
- W3033163677 cites W1509531297 @default.
- W3033163677 cites W1544087675 @default.
- W3033163677 cites W1790731005 @default.
- W3033163677 cites W1966638365 @default.
- W3033163677 cites W1969335564 @default.
- W3033163677 cites W1974578976 @default.
- W3033163677 cites W1976972876 @default.
- W3033163677 cites W1983303405 @default.
- W3033163677 cites W2011092307 @default.
- W3033163677 cites W2016003630 @default.
- W3033163677 cites W2016720955 @default.
- W3033163677 cites W2032935412 @default.
- W3033163677 cites W2035514680 @default.
- W3033163677 cites W2052115160 @default.
- W3033163677 cites W2052761631 @default.
- W3033163677 cites W2053792088 @default.
- W3033163677 cites W2055815003 @default.
- W3033163677 cites W2060776628 @default.
- W3033163677 cites W2098761778 @default.
- W3033163677 cites W2098815387 @default.
- W3033163677 cites W2100495367 @default.
- W3033163677 cites W2101521115 @default.
- W3033163677 cites W2145202303 @default.
- W3033163677 cites W2165698076 @default.
- W3033163677 cites W2170491143 @default.
- W3033163677 cites W2327122781 @default.
- W3033163677 cites W2337673319 @default.
- W3033163677 cites W2394618525 @default.
- W3033163677 cites W2539054576 @default.
- W3033163677 cites W2541220830 @default.
- W3033163677 cites W2602754294 @default.
- W3033163677 cites W2731372149 @default.
- W3033163677 cites W2736973763 @default.
- W3033163677 cites W2765317657 @default.
- W3033163677 cites W2765513165 @default.
- W3033163677 cites W2791709739 @default.
- W3033163677 cites W2792738384 @default.
- W3033163677 cites W2793821349 @default.
- W3033163677 cites W2799448465 @default.
- W3033163677 cites W2884223741 @default.
- W3033163677 cites W2886794804 @default.
- W3033163677 cites W2892598691 @default.
- W3033163677 cites W2895879514 @default.
- W3033163677 cites W2897048111 @default.
- W3033163677 cites W2899279252 @default.
- W3033163677 cites W2899870197 @default.
- W3033163677 cites W2923535998 @default.
- W3033163677 cites W2938523672 @default.
- W3033163677 cites W2940863879 @default.
- W3033163677 cites W2945509102 @default.
- W3033163677 cites W2946298178 @default.
- W3033163677 cites W2956330378 @default.
- W3033163677 cites W2973514646 @default.
- W3033163677 cites W2981680696 @default.
- W3033163677 doi "https://doi.org/10.1109/tim.2020.2998863" @default.
- W3033163677 hasPublicationYear "2020" @default.
- W3033163677 type Work @default.
- W3033163677 sameAs 3033163677 @default.
- W3033163677 citedByCount "17" @default.
- W3033163677 countsByYear W30331636772021 @default.
- W3033163677 countsByYear W30331636772022 @default.
- W3033163677 countsByYear W30331636772023 @default.
- W3033163677 crossrefType "journal-article" @default.
- W3033163677 hasAuthorship W3033163677A5011765460 @default.
- W3033163677 hasAuthorship W3033163677A5025661578 @default.
- W3033163677 hasAuthorship W3033163677A5067368540 @default.
- W3033163677 hasConcept C104317684 @default.
- W3033163677 hasConcept C119599485 @default.
- W3033163677 hasConcept C124101348 @default.
- W3033163677 hasConcept C127313418 @default.
- W3033163677 hasConcept C127413603 @default.
- W3033163677 hasConcept C152745839 @default.
- W3033163677 hasConcept C153180895 @default.
- W3033163677 hasConcept C154945302 @default.
- W3033163677 hasConcept C165205528 @default.
- W3033163677 hasConcept C172707124 @default.
- W3033163677 hasConcept C175551986 @default.
- W3033163677 hasConcept C17744445 @default.
- W3033163677 hasConcept C185592680 @default.
- W3033163677 hasConcept C199539241 @default.
- W3033163677 hasConcept C2775846686 @default.
- W3033163677 hasConcept C2779838221 @default.
- W3033163677 hasConcept C41008148 @default.
- W3033163677 hasConcept C520049643 @default.
- W3033163677 hasConcept C55493867 @default.
- W3033163677 hasConcept C63479239 @default.
- W3033163677 hasConcept C73555534 @default.
- W3033163677 hasConcept C94625758 @default.
- W3033163677 hasConceptScore W3033163677C104317684 @default.
- W3033163677 hasConceptScore W3033163677C119599485 @default.