Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033223912> ?p ?o ?g. }
- W3033223912 endingPage "161" @default.
- W3033223912 startingPage "134" @default.
- W3033223912 abstract "Summary We investigate the finite-sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an empirical Monte Carlo study that relies on arguably realistic data generation processes (DGPs) based on actual data in an observational setting. We consider 24 DGPs, eleven causal machine learning estimators, and three aggregation levels of the estimated effects. Four of the considered estimators perform consistently well across all DGPs and aggregation levels. These estimators have multiple steps to account for the selection into the treatment and the outcome process." @default.
- W3033223912 created "2020-06-12" @default.
- W3033223912 creator A5058027108 @default.
- W3033223912 creator A5064328539 @default.
- W3033223912 creator A5074662536 @default.
- W3033223912 date "2020-06-06" @default.
- W3033223912 modified "2023-10-18" @default.
- W3033223912 title "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence" @default.
- W3033223912 cites W1618214481 @default.
- W3033223912 cites W1995691260 @default.
- W3033223912 cites W1996246784 @default.
- W3033223912 cites W1998653759 @default.
- W3033223912 cites W2014373672 @default.
- W3033223912 cites W2019473361 @default.
- W3033223912 cites W2022943305 @default.
- W3033223912 cites W2058248640 @default.
- W3033223912 cites W2064903582 @default.
- W3033223912 cites W2066153095 @default.
- W3033223912 cites W2100532505 @default.
- W3033223912 cites W2105171386 @default.
- W3033223912 cites W2120846249 @default.
- W3033223912 cites W2131843120 @default.
- W3033223912 cites W2132917208 @default.
- W3033223912 cites W2135046866 @default.
- W3033223912 cites W2140435154 @default.
- W3033223912 cites W2152456876 @default.
- W3033223912 cites W2159199725 @default.
- W3033223912 cites W2163162137 @default.
- W3033223912 cites W2208550830 @default.
- W3033223912 cites W2237217327 @default.
- W3033223912 cites W2305754340 @default.
- W3033223912 cites W2583860259 @default.
- W3033223912 cites W2588022915 @default.
- W3033223912 cites W2614303240 @default.
- W3033223912 cites W2624816748 @default.
- W3033223912 cites W2751077699 @default.
- W3033223912 cites W2807340117 @default.
- W3033223912 cites W2886798606 @default.
- W3033223912 cites W2898373315 @default.
- W3033223912 cites W2899943493 @default.
- W3033223912 cites W2911964244 @default.
- W3033223912 cites W2952150717 @default.
- W3033223912 cites W2962727190 @default.
- W3033223912 cites W2963371984 @default.
- W3033223912 cites W2964099165 @default.
- W3033223912 cites W3004404638 @default.
- W3033223912 cites W3021959460 @default.
- W3033223912 cites W3106017199 @default.
- W3033223912 cites W3121234099 @default.
- W3033223912 cites W3121385028 @default.
- W3033223912 cites W3122149192 @default.
- W3033223912 cites W3122193054 @default.
- W3033223912 cites W3123436326 @default.
- W3033223912 cites W3124038151 @default.
- W3033223912 cites W3124766160 @default.
- W3033223912 cites W3125459289 @default.
- W3033223912 cites W4233471163 @default.
- W3033223912 cites W4294541781 @default.
- W3033223912 cites W86758767 @default.
- W3033223912 cites W99642403 @default.
- W3033223912 doi "https://doi.org/10.1093/ectj/utaa014" @default.
- W3033223912 hasPublicationYear "2020" @default.
- W3033223912 type Work @default.
- W3033223912 sameAs 3033223912 @default.
- W3033223912 citedByCount "37" @default.
- W3033223912 countsByYear W30332239122018 @default.
- W3033223912 countsByYear W30332239122019 @default.
- W3033223912 countsByYear W30332239122020 @default.
- W3033223912 countsByYear W30332239122021 @default.
- W3033223912 countsByYear W30332239122022 @default.
- W3033223912 countsByYear W30332239122023 @default.
- W3033223912 crossrefType "journal-article" @default.
- W3033223912 hasAuthorship W3033223912A5058027108 @default.
- W3033223912 hasAuthorship W3033223912A5064328539 @default.
- W3033223912 hasAuthorship W3033223912A5074662536 @default.
- W3033223912 hasBestOaLocation W30332239121 @default.
- W3033223912 hasConcept C105795698 @default.
- W3033223912 hasConcept C11671645 @default.
- W3033223912 hasConcept C119857082 @default.
- W3033223912 hasConcept C144237770 @default.
- W3033223912 hasConcept C148220186 @default.
- W3033223912 hasConcept C149782125 @default.
- W3033223912 hasConcept C154945302 @default.
- W3033223912 hasConcept C158600405 @default.
- W3033223912 hasConcept C185429906 @default.
- W3033223912 hasConcept C185592680 @default.
- W3033223912 hasConcept C19499675 @default.
- W3033223912 hasConcept C198531522 @default.
- W3033223912 hasConcept C23131810 @default.
- W3033223912 hasConcept C33923547 @default.
- W3033223912 hasConcept C41008148 @default.
- W3033223912 hasConcept C43617362 @default.
- W3033223912 hasConceptScore W3033223912C105795698 @default.
- W3033223912 hasConceptScore W3033223912C11671645 @default.
- W3033223912 hasConceptScore W3033223912C119857082 @default.
- W3033223912 hasConceptScore W3033223912C144237770 @default.
- W3033223912 hasConceptScore W3033223912C148220186 @default.
- W3033223912 hasConceptScore W3033223912C149782125 @default.