Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033235005> ?p ?o ?g. }
- W3033235005 endingPage "103845" @default.
- W3033235005 startingPage "103845" @default.
- W3033235005 abstract "Sperm Morphology is the key step in the assessment of sperm quality. Due to the effect of misleading human factors in manual assessments, computer-based techniques should be employed in the analysis. In this study, a computation framework including multi-stage cascade connected preprocessing techniques, region based descriptor features, and non-linear kernel SVM based learning is proposed for the classification of any stained sperm images for the assessment of the morphology. The proposed framework was evaluated on two sperm morphology datasets: the Human Sperm Head Morphology dataset (HuSHeM) and Sperm Morphology Image Data Set (SMIDS). The results indicate that cascading the preprocessing techniques used in the proposed framework, such as wavelet based local adaptive de-noising, modified overlapping group shrinkage, image gradient, and automatic directional masking, increased the classification accuracy by 10% and 5% for the HuSHeM and SMIDS, respectively. The proposed framework results in better overall accuracy than most state-of-the-art methods, while having significant advantages, such as eliminating the exhaustive manual orientation and cropping operations of the competitors with reasonable rates of consumption of time and source." @default.
- W3033235005 created "2020-06-12" @default.
- W3033235005 creator A5022727512 @default.
- W3033235005 creator A5061586060 @default.
- W3033235005 creator A5081837964 @default.
- W3033235005 date "2020-07-01" @default.
- W3033235005 modified "2023-10-13" @default.
- W3033235005 title "Automated sperm morphology analysis approach using a directional masking technique" @default.
- W3033235005 cites W1261619908 @default.
- W3033235005 cites W1446879558 @default.
- W3033235005 cites W1756759128 @default.
- W3033235005 cites W1966811077 @default.
- W3033235005 cites W1974018463 @default.
- W3033235005 cites W1986753407 @default.
- W3033235005 cites W1994610202 @default.
- W3033235005 cites W1997828165 @default.
- W3033235005 cites W1999238313 @default.
- W3033235005 cites W2009613402 @default.
- W3033235005 cites W2016481832 @default.
- W3033235005 cites W2017960228 @default.
- W3033235005 cites W2018332268 @default.
- W3033235005 cites W2034841618 @default.
- W3033235005 cites W2039471474 @default.
- W3033235005 cites W2043573731 @default.
- W3033235005 cites W2046468425 @default.
- W3033235005 cites W2057950952 @default.
- W3033235005 cites W2069165391 @default.
- W3033235005 cites W2083337408 @default.
- W3033235005 cites W2089711990 @default.
- W3033235005 cites W2093867321 @default.
- W3033235005 cites W2096945460 @default.
- W3033235005 cites W2098371241 @default.
- W3033235005 cites W2099454382 @default.
- W3033235005 cites W2100402230 @default.
- W3033235005 cites W2100805904 @default.
- W3033235005 cites W2102400761 @default.
- W3033235005 cites W2103598207 @default.
- W3033235005 cites W2108429253 @default.
- W3033235005 cites W2115591852 @default.
- W3033235005 cites W2116405251 @default.
- W3033235005 cites W2119605622 @default.
- W3033235005 cites W2120339103 @default.
- W3033235005 cites W2124404372 @default.
- W3033235005 cites W2150603187 @default.
- W3033235005 cites W2152047336 @default.
- W3033235005 cites W2157156749 @default.
- W3033235005 cites W2161073299 @default.
- W3033235005 cites W2170505850 @default.
- W3033235005 cites W2170885533 @default.
- W3033235005 cites W2300279917 @default.
- W3033235005 cites W2310200922 @default.
- W3033235005 cites W2419516302 @default.
- W3033235005 cites W2513244148 @default.
- W3033235005 cites W2538354594 @default.
- W3033235005 cites W2565543439 @default.
- W3033235005 cites W2592538491 @default.
- W3033235005 cites W2592953314 @default.
- W3033235005 cites W2593131729 @default.
- W3033235005 cites W2599155168 @default.
- W3033235005 cites W2605467103 @default.
- W3033235005 cites W2736614482 @default.
- W3033235005 cites W2757770740 @default.
- W3033235005 cites W2763739959 @default.
- W3033235005 cites W2774173488 @default.
- W3033235005 cites W2795956707 @default.
- W3033235005 cites W2884211269 @default.
- W3033235005 cites W2888673897 @default.
- W3033235005 cites W2895269073 @default.
- W3033235005 cites W2900286562 @default.
- W3033235005 cites W2907169724 @default.
- W3033235005 cites W2923387117 @default.
- W3033235005 cites W2970306554 @default.
- W3033235005 cites W2974962108 @default.
- W3033235005 cites W2979950223 @default.
- W3033235005 cites W3004732066 @default.
- W3033235005 cites W3011239283 @default.
- W3033235005 cites W303143226 @default.
- W3033235005 cites W4212883601 @default.
- W3033235005 cites W4239510810 @default.
- W3033235005 cites W4294214797 @default.
- W3033235005 doi "https://doi.org/10.1016/j.compbiomed.2020.103845" @default.
- W3033235005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32658734" @default.
- W3033235005 hasPublicationYear "2020" @default.
- W3033235005 type Work @default.
- W3033235005 sameAs 3033235005 @default.
- W3033235005 citedByCount "15" @default.
- W3033235005 countsByYear W30332350052020 @default.
- W3033235005 countsByYear W30332350052021 @default.
- W3033235005 countsByYear W30332350052022 @default.
- W3033235005 countsByYear W30332350052023 @default.
- W3033235005 crossrefType "journal-article" @default.
- W3033235005 hasAuthorship W3033235005A5022727512 @default.
- W3033235005 hasAuthorship W3033235005A5061586060 @default.
- W3033235005 hasAuthorship W3033235005A5081837964 @default.
- W3033235005 hasConcept C142362112 @default.
- W3033235005 hasConcept C153180895 @default.
- W3033235005 hasConcept C153349607 @default.
- W3033235005 hasConcept C154945302 @default.