Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033236873> ?p ?o ?g. }
- W3033236873 endingPage "5246" @default.
- W3033236873 startingPage "5232" @default.
- W3033236873 abstract "Localization services play an important role in Internet of Connected Vehicles (IoCV) and vehicle predictive localization information can greatly improve traffic efficiency and reduce accidents. However, a huge amount of computing and communication overhead is required to obtain such information by traditional methods. In this work, we propose a Behavior-based Clustering Method (BCM) to analyze the behavioral correlation between vehicles and classify them into different clusters. Based on BCM results coupled with a deep learning model, we further propose a Clustering-learning-based Long-term Predictive Localization (CLPL) algorithm to predict vehicles' future location distribution. In the proposed CLPL algorithm, all the traffic roads are divided into consecutive small segments in order to pinpoint vehicles' precise current locations and to obtain long-term predictions. Extensive simulations, notably involving real dataset, have been carried out to evaluate BCM and CLPL in terms of several performance criteria including matching rates. The analysis of the results validated how the designed methods can predict vehicle location much more accurately than existing algorithms." @default.
- W3033236873 created "2020-06-12" @default.
- W3033236873 creator A5009596514 @default.
- W3033236873 creator A5009824003 @default.
- W3033236873 creator A5023424929 @default.
- W3033236873 creator A5048277494 @default.
- W3033236873 creator A5088770849 @default.
- W3033236873 date "2021-08-01" @default.
- W3033236873 modified "2023-10-06" @default.
- W3033236873 title "Clustering-Learning-Based Long-Term Predictive Localization in 5G-Envisioned Internet of Connected Vehicles" @default.
- W3033236873 cites W1918437315 @default.
- W3033236873 cites W1999508674 @default.
- W3033236873 cites W2031627503 @default.
- W3033236873 cites W2032717371 @default.
- W3033236873 cites W2039053171 @default.
- W3033236873 cites W2040297119 @default.
- W3033236873 cites W2080403625 @default.
- W3033236873 cites W2088338354 @default.
- W3033236873 cites W2095293504 @default.
- W3033236873 cites W2115632271 @default.
- W3033236873 cites W2117274638 @default.
- W3033236873 cites W2120043163 @default.
- W3033236873 cites W2131767615 @default.
- W3033236873 cites W2205224283 @default.
- W3033236873 cites W2340901484 @default.
- W3033236873 cites W2344029946 @default.
- W3033236873 cites W2523137271 @default.
- W3033236873 cites W2563686712 @default.
- W3033236873 cites W2588025843 @default.
- W3033236873 cites W2607883279 @default.
- W3033236873 cites W2699159235 @default.
- W3033236873 cites W2759575792 @default.
- W3033236873 cites W2763916687 @default.
- W3033236873 cites W2765119334 @default.
- W3033236873 cites W2765624302 @default.
- W3033236873 cites W2775492430 @default.
- W3033236873 cites W2778363563 @default.
- W3033236873 cites W2799109291 @default.
- W3033236873 cites W2829536470 @default.
- W3033236873 cites W2905094491 @default.
- W3033236873 cites W2915337192 @default.
- W3033236873 cites W2921118689 @default.
- W3033236873 cites W2921483425 @default.
- W3033236873 cites W2926133619 @default.
- W3033236873 cites W2963889363 @default.
- W3033236873 cites W2966935339 @default.
- W3033236873 cites W2975052829 @default.
- W3033236873 cites W2975816306 @default.
- W3033236873 cites W2983639458 @default.
- W3033236873 cites W3103973800 @default.
- W3033236873 doi "https://doi.org/10.1109/tits.2020.2997472" @default.
- W3033236873 hasPublicationYear "2021" @default.
- W3033236873 type Work @default.
- W3033236873 sameAs 3033236873 @default.
- W3033236873 citedByCount "13" @default.
- W3033236873 countsByYear W30332368732020 @default.
- W3033236873 countsByYear W30332368732021 @default.
- W3033236873 countsByYear W30332368732022 @default.
- W3033236873 countsByYear W30332368732023 @default.
- W3033236873 crossrefType "journal-article" @default.
- W3033236873 hasAuthorship W3033236873A5009596514 @default.
- W3033236873 hasAuthorship W3033236873A5009824003 @default.
- W3033236873 hasAuthorship W3033236873A5023424929 @default.
- W3033236873 hasAuthorship W3033236873A5048277494 @default.
- W3033236873 hasAuthorship W3033236873A5088770849 @default.
- W3033236873 hasConcept C105795698 @default.
- W3033236873 hasConcept C110875604 @default.
- W3033236873 hasConcept C111919701 @default.
- W3033236873 hasConcept C119857082 @default.
- W3033236873 hasConcept C121332964 @default.
- W3033236873 hasConcept C124101348 @default.
- W3033236873 hasConcept C136764020 @default.
- W3033236873 hasConcept C154945302 @default.
- W3033236873 hasConcept C165064840 @default.
- W3033236873 hasConcept C2779960059 @default.
- W3033236873 hasConcept C33923547 @default.
- W3033236873 hasConcept C41008148 @default.
- W3033236873 hasConcept C61797465 @default.
- W3033236873 hasConcept C62520636 @default.
- W3033236873 hasConcept C73555534 @default.
- W3033236873 hasConceptScore W3033236873C105795698 @default.
- W3033236873 hasConceptScore W3033236873C110875604 @default.
- W3033236873 hasConceptScore W3033236873C111919701 @default.
- W3033236873 hasConceptScore W3033236873C119857082 @default.
- W3033236873 hasConceptScore W3033236873C121332964 @default.
- W3033236873 hasConceptScore W3033236873C124101348 @default.
- W3033236873 hasConceptScore W3033236873C136764020 @default.
- W3033236873 hasConceptScore W3033236873C154945302 @default.
- W3033236873 hasConceptScore W3033236873C165064840 @default.
- W3033236873 hasConceptScore W3033236873C2779960059 @default.
- W3033236873 hasConceptScore W3033236873C33923547 @default.
- W3033236873 hasConceptScore W3033236873C41008148 @default.
- W3033236873 hasConceptScore W3033236873C61797465 @default.
- W3033236873 hasConceptScore W3033236873C62520636 @default.
- W3033236873 hasConceptScore W3033236873C73555534 @default.
- W3033236873 hasFunder F4320321001 @default.
- W3033236873 hasFunder F4320335777 @default.
- W3033236873 hasFunder F4320335787 @default.