Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033244865> ?p ?o ?g. }
- W3033244865 endingPage "104644" @default.
- W3033244865 startingPage "104644" @default.
- W3033244865 abstract "Corrupted data sets containing noisy or missing observations are prevalent in various contemporary applications such as economics, finance and bioinformatics. Despite the recent methodological and algorithmic advances in high-dimensional multi-response regression, how to achieve scalable and interpretable estimation under contaminated covariates is unclear. In this paper, we develop a new methodology called convex conditioned sequential sparse learning (COSS) for error-in-variables multi-response regression under both additive measurement errors and random missing data. It combines the strengths of the recently developed sequential sparse factor regression and the nearest positive semi-definite matrix projection, thus enjoying stepwise convexity and scalability in large-scale association analyses. Comprehensive theoretical guarantees are provided and we demonstrate the effectiveness of the proposed methodology through numerical studies." @default.
- W3033244865 created "2020-06-12" @default.
- W3033244865 creator A5000310038 @default.
- W3033244865 creator A5028724670 @default.
- W3033244865 creator A5044544424 @default.
- W3033244865 creator A5058738719 @default.
- W3033244865 date "2020-09-01" @default.
- W3033244865 modified "2023-10-13" @default.
- W3033244865 title "Scalable interpretable learning for multi-response error-in-variables regression" @default.
- W3033244865 cites W1560153690 @default.
- W3033244865 cites W2012496484 @default.
- W3033244865 cites W2074682976 @default.
- W3033244865 cites W2077870633 @default.
- W3033244865 cites W2092199153 @default.
- W3033244865 cites W2094793482 @default.
- W3033244865 cites W2099210013 @default.
- W3033244865 cites W2116581043 @default.
- W3033244865 cites W2154972590 @default.
- W3033244865 cites W2530124015 @default.
- W3033244865 cites W2625557855 @default.
- W3033244865 cites W2799951999 @default.
- W3033244865 cites W2909650844 @default.
- W3033244865 cites W2962725216 @default.
- W3033244865 cites W2963233138 @default.
- W3033244865 cites W2963943660 @default.
- W3033244865 cites W3100107458 @default.
- W3033244865 cites W3102567422 @default.
- W3033244865 cites W3103211861 @default.
- W3033244865 doi "https://doi.org/10.1016/j.jmva.2020.104644" @default.
- W3033244865 hasPublicationYear "2020" @default.
- W3033244865 type Work @default.
- W3033244865 sameAs 3033244865 @default.
- W3033244865 citedByCount "2" @default.
- W3033244865 countsByYear W30332448652020 @default.
- W3033244865 countsByYear W30332448652023 @default.
- W3033244865 crossrefType "journal-article" @default.
- W3033244865 hasAuthorship W3033244865A5000310038 @default.
- W3033244865 hasAuthorship W3033244865A5028724670 @default.
- W3033244865 hasAuthorship W3033244865A5044544424 @default.
- W3033244865 hasAuthorship W3033244865A5058738719 @default.
- W3033244865 hasBestOaLocation W30332448652 @default.
- W3033244865 hasConcept C105795698 @default.
- W3033244865 hasConcept C106159729 @default.
- W3033244865 hasConcept C11413529 @default.
- W3033244865 hasConcept C119043178 @default.
- W3033244865 hasConcept C119857082 @default.
- W3033244865 hasConcept C121332964 @default.
- W3033244865 hasConcept C124101348 @default.
- W3033244865 hasConcept C152877465 @default.
- W3033244865 hasConcept C154945302 @default.
- W3033244865 hasConcept C162324750 @default.
- W3033244865 hasConcept C2777036070 @default.
- W3033244865 hasConcept C2778755073 @default.
- W3033244865 hasConcept C33923547 @default.
- W3033244865 hasConcept C41008148 @default.
- W3033244865 hasConcept C48044578 @default.
- W3033244865 hasConcept C57493831 @default.
- W3033244865 hasConcept C62520636 @default.
- W3033244865 hasConcept C72134830 @default.
- W3033244865 hasConcept C77088390 @default.
- W3033244865 hasConcept C83546350 @default.
- W3033244865 hasConcept C9357733 @default.
- W3033244865 hasConceptScore W3033244865C105795698 @default.
- W3033244865 hasConceptScore W3033244865C106159729 @default.
- W3033244865 hasConceptScore W3033244865C11413529 @default.
- W3033244865 hasConceptScore W3033244865C119043178 @default.
- W3033244865 hasConceptScore W3033244865C119857082 @default.
- W3033244865 hasConceptScore W3033244865C121332964 @default.
- W3033244865 hasConceptScore W3033244865C124101348 @default.
- W3033244865 hasConceptScore W3033244865C152877465 @default.
- W3033244865 hasConceptScore W3033244865C154945302 @default.
- W3033244865 hasConceptScore W3033244865C162324750 @default.
- W3033244865 hasConceptScore W3033244865C2777036070 @default.
- W3033244865 hasConceptScore W3033244865C2778755073 @default.
- W3033244865 hasConceptScore W3033244865C33923547 @default.
- W3033244865 hasConceptScore W3033244865C41008148 @default.
- W3033244865 hasConceptScore W3033244865C48044578 @default.
- W3033244865 hasConceptScore W3033244865C57493831 @default.
- W3033244865 hasConceptScore W3033244865C62520636 @default.
- W3033244865 hasConceptScore W3033244865C72134830 @default.
- W3033244865 hasConceptScore W3033244865C77088390 @default.
- W3033244865 hasConceptScore W3033244865C83546350 @default.
- W3033244865 hasConceptScore W3033244865C9357733 @default.
- W3033244865 hasFunder F4320321001 @default.
- W3033244865 hasFunder F4320334897 @default.
- W3033244865 hasFunder F4320335787 @default.
- W3033244865 hasLocation W30332448651 @default.
- W3033244865 hasLocation W30332448652 @default.
- W3033244865 hasOpenAccess W3033244865 @default.
- W3033244865 hasPrimaryLocation W30332448651 @default.
- W3033244865 hasRelatedWork W2033523051 @default.
- W3033244865 hasRelatedWork W2057612738 @default.
- W3033244865 hasRelatedWork W2064168458 @default.
- W3033244865 hasRelatedWork W2592293938 @default.
- W3033244865 hasRelatedWork W2794358477 @default.
- W3033244865 hasRelatedWork W3032945164 @default.
- W3033244865 hasRelatedWork W3037895282 @default.
- W3033244865 hasRelatedWork W3197970974 @default.