Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033333977> ?p ?o ?g. }
- W3033333977 endingPage "253" @default.
- W3033333977 startingPage "253" @default.
- W3033333977 abstract "Plant photosynthesis is the fundamental driver of all the biospheric functions. Alpine meadow on the Tibetan Plateau is sensitive to rapid climate change, and thus can be considered an indicator for the response of terrestrial ecosystems to climate change. However, seasonal variations in photosynthetic parameters, including the fraction of photosynthetically active radiation by canopy (FPAR), the light extinction coefficient (k) through canopy, and the leaf area index (LAI) of plant communities, are not known for alpine meadows on the Tibetan Plateau. In this study, we used field measurements of radiation components and canopy structure from 2009 to 2011 at a typical alpine meadow on the northern Tibetan Plateau to calculate these three photosynthetic parameters. We developed a satellite-based (NDVI and EVI) method derived from the Beer-Lambert law to estimate the seasonal dynamics of FPAR, k ,and LAI, and we compared these estimates with the Moderate Resolution Imaging Spectroradiometer (MODIS) FPAR (FPAR_MOD) and LAI product (LAI_MOD). The results showed that the average daily FPAR was 0.33, 0.37 and 0.35, respectively, from 2009 to 2011, and that the temporal variations could be explained by all four satellite-based FPAR estimations, including FPAR_MOD, an FPAR estimation derived from the Beer-Lambert law with a constant k (FPAR_LAI), and two FPAR estimations from the nonlinear functions between the ground measurements of FPAR (FAPRg) and NDVI/EVI (FPAR_NDVI and FPAR_EVI). We found that FPAR_MOD seriously undervalued FPARg by over 40%. Tower-based FPAR_LAI also significantly underestimated FPARg by approximately 20% due to the constant k (0.5) throughout the whole growing seasons. This indicated that using FPAR_LAI to validate the FPAR_MOD was not an appropriate method in this alpine meadow because the seasonal variation of k ranged from 0.19 to 2.95 in this alpine meadow. Thus, if the seasonal variation of k was taken into consideration, both FPAR_NDVI and FPAR_EVI provided better descriptions, with negligible overestimates of less than 5% of FAPRg (RMSE=0.05), in FPARg estimations than FPAR_MOD and FPAR_LAI. Combining the satellite-based (NDVI and EVI) estimations of seasonal FPAR and k, LAI_NDVI and LAI_EVI derived from the Beer-Lambert law also provided better LAIg estimations than LAI_MOD (less than 30% of LAIg). Therefore, this study concluded that satellite-based models derived from the Beer-Lambert law were a simple and efficient method for estimating the seasonal dynamics of FPAR, k and LAI in this alpine meadow." @default.
- W3033333977 created "2020-06-12" @default.
- W3033333977 creator A5008245653 @default.
- W3033333977 creator A5010035718 @default.
- W3033333977 creator A5024053576 @default.
- W3033333977 creator A5029712349 @default.
- W3033333977 creator A5065569352 @default.
- W3033333977 date "2020-06-05" @default.
- W3033333977 modified "2023-09-28" @default.
- W3033333977 title "Satellite-based Estimates of Canopy Photosynthetic Parameters for an Alpine Meadow in Northern Tibet" @default.
- W3033333977 cites W1584031569 @default.
- W3033333977 cites W1758024742 @default.
- W3033333977 cites W1840265963 @default.
- W3033333977 cites W1967906599 @default.
- W3033333977 cites W1969787875 @default.
- W3033333977 cites W1983450259 @default.
- W3033333977 cites W1990588213 @default.
- W3033333977 cites W2002471098 @default.
- W3033333977 cites W2025851814 @default.
- W3033333977 cites W2034326541 @default.
- W3033333977 cites W2041400105 @default.
- W3033333977 cites W2053984125 @default.
- W3033333977 cites W2054502362 @default.
- W3033333977 cites W2059302264 @default.
- W3033333977 cites W2064978234 @default.
- W3033333977 cites W2067484592 @default.
- W3033333977 cites W2068451607 @default.
- W3033333977 cites W2078373947 @default.
- W3033333977 cites W2079711883 @default.
- W3033333977 cites W2083707159 @default.
- W3033333977 cites W2099539940 @default.
- W3033333977 cites W2102127703 @default.
- W3033333977 cites W2110041072 @default.
- W3033333977 cites W2116520559 @default.
- W3033333977 cites W2118102799 @default.
- W3033333977 cites W2123787025 @default.
- W3033333977 cites W2130019576 @default.
- W3033333977 cites W2133155574 @default.
- W3033333977 cites W2137950494 @default.
- W3033333977 cites W2140757666 @default.
- W3033333977 cites W2146754899 @default.
- W3033333977 cites W2152596382 @default.
- W3033333977 cites W2152821670 @default.
- W3033333977 cites W2154754564 @default.
- W3033333977 cites W2164574849 @default.
- W3033333977 cites W2167248655 @default.
- W3033333977 cites W2308036081 @default.
- W3033333977 cites W2351676803 @default.
- W3033333977 cites W2362184422 @default.
- W3033333977 cites W2385578781 @default.
- W3033333977 cites W2462586880 @default.
- W3033333977 cites W2470317936 @default.
- W3033333977 cites W2557818291 @default.
- W3033333977 cites W2583190531 @default.
- W3033333977 cites W2590080180 @default.
- W3033333977 cites W2606967804 @default.
- W3033333977 cites W2618355102 @default.
- W3033333977 cites W2626420856 @default.
- W3033333977 cites W2634251853 @default.
- W3033333977 cites W2887922626 @default.
- W3033333977 cites W2891022374 @default.
- W3033333977 cites W2895818596 @default.
- W3033333977 cites W2948928491 @default.
- W3033333977 cites W2971653617 @default.
- W3033333977 cites W2976728549 @default.
- W3033333977 cites W3127422930 @default.
- W3033333977 cites W839400859 @default.
- W3033333977 doi "https://doi.org/10.5814/j.issn.1674-764x.2020.03.002" @default.
- W3033333977 hasPublicationYear "2020" @default.
- W3033333977 type Work @default.
- W3033333977 sameAs 3033333977 @default.
- W3033333977 citedByCount "2" @default.
- W3033333977 countsByYear W30333339772020 @default.
- W3033333977 countsByYear W30333339772022 @default.
- W3033333977 crossrefType "journal-article" @default.
- W3033333977 hasAuthorship W3033333977A5008245653 @default.
- W3033333977 hasAuthorship W3033333977A5010035718 @default.
- W3033333977 hasAuthorship W3033333977A5024053576 @default.
- W3033333977 hasAuthorship W3033333977A5029712349 @default.
- W3033333977 hasAuthorship W3033333977A5065569352 @default.
- W3033333977 hasConcept C101000010 @default.
- W3033333977 hasConcept C121332964 @default.
- W3033333977 hasConcept C127313418 @default.
- W3033333977 hasConcept C1276947 @default.
- W3033333977 hasConcept C131366478 @default.
- W3033333977 hasConcept C134306372 @default.
- W3033333977 hasConcept C1549246 @default.
- W3033333977 hasConcept C183688256 @default.
- W3033333977 hasConcept C18903297 @default.
- W3033333977 hasConcept C19269812 @default.
- W3033333977 hasConcept C205649164 @default.
- W3033333977 hasConcept C25989453 @default.
- W3033333977 hasConcept C2777007095 @default.
- W3033333977 hasConcept C2780030769 @default.
- W3033333977 hasConcept C33923547 @default.
- W3033333977 hasConcept C39432304 @default.
- W3033333977 hasConcept C59822182 @default.
- W3033333977 hasConcept C62649853 @default.