Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033355903> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3033355903 endingPage "3974" @default.
- W3033355903 startingPage "3974" @default.
- W3033355903 abstract "The analysis and follow up of asphalt infrastructure using image processing techniques has received increased attention recently. However, the vast majority of developments have focused only on determining the presence or absence of road damages, forgoing other more pressing concerns. Nonetheless, in order to be useful to road managers and governmental agencies, the information gathered during an inspection procedure must provide actionable insights that go beyond punctual and isolated measurements: the characteristics, type, and extent of the road damages must be effectively and automatically extracted and digitally stored, preferably using inexpensive mobile equipment. In recent years, computer vision acquisition systems have emerged as a promising solution for road damage automated inspection systems when integrated into georeferenced mobile computing devices such as smartphones. However, the artificial intelligence algorithms that power these computer vision acquisition systems have been rather limited owing to the scarcity of large and homogenized road damage datasets. In this work, we aim to contribute in bridging this gap using two strategies. First, we introduce a new and very large asphalt dataset, which incorporates a set of damages not present in previous studies, making it more robust and representative of certain damages such as potholes. This dataset is composed of 18,345 road damage images captured by a mobile phone mounted on a car, with 45,435 instances of road surface damages (linear, lateral, and alligator cracks; potholes; and various types of painting blurs). In order to generate this dataset, we obtained images from several public datasets and augmented it with crowdsourced images, which where manually annotated for further processing. The images were captured under a variety of weather and illumination conditions and a quality-aware data augmentation strategy was employed to filter out samples of poor quality, which helped in improving the performance metrics over the baseline. Second, we trained different object detection models amenable for mobile implementation with an acceptable performance for many applications. We performed an ablation study to assess the effectiveness of the quality-aware data augmentation strategy and compared our results with other recent works, achieving better accuracies (mAP) for all classes and lower inference times (3× faster)." @default.
- W3033355903 created "2020-06-12" @default.
- W3033355903 creator A5009906483 @default.
- W3033355903 creator A5021552826 @default.
- W3033355903 creator A5025943017 @default.
- W3033355903 creator A5044516813 @default.
- W3033355903 creator A5046193520 @default.
- W3033355903 creator A5046647566 @default.
- W3033355903 date "2020-06-08" @default.
- W3033355903 modified "2023-10-01" @default.
- W3033355903 title "An Asphalt Damage Dataset and Detection System Based on RetinaNet for Road Conditions Assessment" @default.
- W3033355903 cites W1644863801 @default.
- W3033355903 cites W1995130521 @default.
- W3033355903 cites W2015100754 @default.
- W3033355903 cites W2099531274 @default.
- W3033355903 cites W2115579991 @default.
- W3033355903 cites W2128880484 @default.
- W3033355903 cites W2133251833 @default.
- W3033355903 cites W2565354498 @default.
- W3033355903 cites W2588612844 @default.
- W3033355903 cites W2598457882 @default.
- W3033355903 cites W2800343216 @default.
- W3033355903 cites W2806229851 @default.
- W3033355903 cites W2806231060 @default.
- W3033355903 cites W2892341857 @default.
- W3033355903 cites W2988916019 @default.
- W3033355903 cites W3005757878 @default.
- W3033355903 doi "https://doi.org/10.3390/app10113974" @default.
- W3033355903 hasPublicationYear "2020" @default.
- W3033355903 type Work @default.
- W3033355903 sameAs 3033355903 @default.
- W3033355903 citedByCount "21" @default.
- W3033355903 countsByYear W30333559032020 @default.
- W3033355903 countsByYear W30333559032021 @default.
- W3033355903 countsByYear W30333559032022 @default.
- W3033355903 countsByYear W30333559032023 @default.
- W3033355903 crossrefType "journal-article" @default.
- W3033355903 hasAuthorship W3033355903A5009906483 @default.
- W3033355903 hasAuthorship W3033355903A5021552826 @default.
- W3033355903 hasAuthorship W3033355903A5025943017 @default.
- W3033355903 hasAuthorship W3033355903A5044516813 @default.
- W3033355903 hasAuthorship W3033355903A5046193520 @default.
- W3033355903 hasAuthorship W3033355903A5046647566 @default.
- W3033355903 hasBestOaLocation W30333559031 @default.
- W3033355903 hasConcept C109747225 @default.
- W3033355903 hasConcept C162324750 @default.
- W3033355903 hasConcept C175444787 @default.
- W3033355903 hasConcept C17744445 @default.
- W3033355903 hasConcept C199539241 @default.
- W3033355903 hasConcept C2777381055 @default.
- W3033355903 hasConcept C2777421447 @default.
- W3033355903 hasConcept C41008148 @default.
- W3033355903 hasConcept C76155785 @default.
- W3033355903 hasConceptScore W3033355903C109747225 @default.
- W3033355903 hasConceptScore W3033355903C162324750 @default.
- W3033355903 hasConceptScore W3033355903C175444787 @default.
- W3033355903 hasConceptScore W3033355903C17744445 @default.
- W3033355903 hasConceptScore W3033355903C199539241 @default.
- W3033355903 hasConceptScore W3033355903C2777381055 @default.
- W3033355903 hasConceptScore W3033355903C2777421447 @default.
- W3033355903 hasConceptScore W3033355903C41008148 @default.
- W3033355903 hasConceptScore W3033355903C76155785 @default.
- W3033355903 hasIssue "11" @default.
- W3033355903 hasLocation W30333559031 @default.
- W3033355903 hasOpenAccess W3033355903 @default.
- W3033355903 hasPrimaryLocation W30333559031 @default.
- W3033355903 hasRelatedWork W2126837665 @default.
- W3033355903 hasRelatedWork W2313063416 @default.
- W3033355903 hasRelatedWork W2603921323 @default.
- W3033355903 hasRelatedWork W2774213472 @default.
- W3033355903 hasRelatedWork W2912537563 @default.
- W3033355903 hasRelatedWork W3138445338 @default.
- W3033355903 hasRelatedWork W3177072964 @default.
- W3033355903 hasRelatedWork W3212838155 @default.
- W3033355903 hasRelatedWork W4220927869 @default.
- W3033355903 hasRelatedWork W2162246616 @default.
- W3033355903 hasVolume "10" @default.
- W3033355903 isParatext "false" @default.
- W3033355903 isRetracted "false" @default.
- W3033355903 magId "3033355903" @default.
- W3033355903 workType "article" @default.