Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033358104> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3033358104 endingPage "602" @default.
- W3033358104 startingPage "593" @default.
- W3033358104 abstract "Objectives The aim of this study was to develop a computer vision algorithm based on artificial intelligence, designed to automatically detect and classify various dental restorations on panoramic radiographs. Study Design A total of 738 dental restorations in 83 anonymized panoramic images were analyzed. Images were automatically cropped to obtain the region of interest containing maxillary and mandibular alveolar ridges. Subsequently, the restorations were segmented by using a local adaptive threshold. The segmented restorations were classified into 11 categories, and the algorithm was trained to classify them. Numerical features based on the shape and distribution of gray level values extracted by the algorithm were used for classifying the restorations into different categories. Finally, a Cubic Support Vector Machine algorithm with Error-Correcting Output Codes was used with a cross-validation approach for the multiclass classification of the restorations according to these features. Results The algorithm detected 94.6% of the restorations. Classification eliminated all erroneous marks, and ultimately, 90.5% of the restorations were marked on the image. The overall accuracy of the classification stage in discriminating between the true restoration categories was 93.6%. Conclusions This machine-learning algorithm demonstrated excellent performance in detecting and classifying dental restorations on panoramic images. The aim of this study was to develop a computer vision algorithm based on artificial intelligence, designed to automatically detect and classify various dental restorations on panoramic radiographs. A total of 738 dental restorations in 83 anonymized panoramic images were analyzed. Images were automatically cropped to obtain the region of interest containing maxillary and mandibular alveolar ridges. Subsequently, the restorations were segmented by using a local adaptive threshold. The segmented restorations were classified into 11 categories, and the algorithm was trained to classify them. Numerical features based on the shape and distribution of gray level values extracted by the algorithm were used for classifying the restorations into different categories. Finally, a Cubic Support Vector Machine algorithm with Error-Correcting Output Codes was used with a cross-validation approach for the multiclass classification of the restorations according to these features. The algorithm detected 94.6% of the restorations. Classification eliminated all erroneous marks, and ultimately, 90.5% of the restorations were marked on the image. The overall accuracy of the classification stage in discriminating between the true restoration categories was 93.6%. This machine-learning algorithm demonstrated excellent performance in detecting and classifying dental restorations on panoramic images." @default.
- W3033358104 created "2020-06-12" @default.
- W3033358104 creator A5005482388 @default.
- W3033358104 creator A5012823126 @default.
- W3033358104 creator A5016384361 @default.
- W3033358104 creator A5044416546 @default.
- W3033358104 creator A5064721182 @default.
- W3033358104 date "2020-11-01" @default.
- W3033358104 modified "2023-10-01" @default.
- W3033358104 title "An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography" @default.
- W3033358104 cites W106526531 @default.
- W3033358104 cites W1841482152 @default.
- W3033358104 cites W1981148723 @default.
- W3033358104 cites W1998143850 @default.
- W3033358104 cites W2019536206 @default.
- W3033358104 cites W2033860742 @default.
- W3033358104 cites W2059933292 @default.
- W3033358104 cites W2063945200 @default.
- W3033358104 cites W2064613277 @default.
- W3033358104 cites W2069816479 @default.
- W3033358104 cites W2085041037 @default.
- W3033358104 cites W2100293421 @default.
- W3033358104 cites W2133059825 @default.
- W3033358104 cites W2141619730 @default.
- W3033358104 cites W2326238091 @default.
- W3033358104 cites W2538668074 @default.
- W3033358104 cites W2590458860 @default.
- W3033358104 cites W2598946041 @default.
- W3033358104 cites W2765527079 @default.
- W3033358104 cites W2789894922 @default.
- W3033358104 cites W2803760365 @default.
- W3033358104 cites W2808559110 @default.
- W3033358104 cites W2976258059 @default.
- W3033358104 cites W3008687455 @default.
- W3033358104 doi "https://doi.org/10.1016/j.oooo.2020.05.012" @default.
- W3033358104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32646672" @default.
- W3033358104 hasPublicationYear "2020" @default.
- W3033358104 type Work @default.
- W3033358104 sameAs 3033358104 @default.
- W3033358104 citedByCount "45" @default.
- W3033358104 countsByYear W30333581042020 @default.
- W3033358104 countsByYear W30333581042021 @default.
- W3033358104 countsByYear W30333581042022 @default.
- W3033358104 countsByYear W30333581042023 @default.
- W3033358104 crossrefType "journal-article" @default.
- W3033358104 hasAuthorship W3033358104A5005482388 @default.
- W3033358104 hasAuthorship W3033358104A5012823126 @default.
- W3033358104 hasAuthorship W3033358104A5016384361 @default.
- W3033358104 hasAuthorship W3033358104A5044416546 @default.
- W3033358104 hasAuthorship W3033358104A5064721182 @default.
- W3033358104 hasConcept C12267149 @default.
- W3033358104 hasConcept C126838900 @default.
- W3033358104 hasConcept C153180895 @default.
- W3033358104 hasConcept C154945302 @default.
- W3033358104 hasConcept C199343813 @default.
- W3033358104 hasConcept C31972630 @default.
- W3033358104 hasConcept C36454342 @default.
- W3033358104 hasConcept C41008148 @default.
- W3033358104 hasConcept C71924100 @default.
- W3033358104 hasConceptScore W3033358104C12267149 @default.
- W3033358104 hasConceptScore W3033358104C126838900 @default.
- W3033358104 hasConceptScore W3033358104C153180895 @default.
- W3033358104 hasConceptScore W3033358104C154945302 @default.
- W3033358104 hasConceptScore W3033358104C199343813 @default.
- W3033358104 hasConceptScore W3033358104C31972630 @default.
- W3033358104 hasConceptScore W3033358104C36454342 @default.
- W3033358104 hasConceptScore W3033358104C41008148 @default.
- W3033358104 hasConceptScore W3033358104C71924100 @default.
- W3033358104 hasIssue "5" @default.
- W3033358104 hasLocation W30333581041 @default.
- W3033358104 hasLocation W30333581042 @default.
- W3033358104 hasOpenAccess W3033358104 @default.
- W3033358104 hasPrimaryLocation W30333581041 @default.
- W3033358104 hasRelatedWork W2041399278 @default.
- W3033358104 hasRelatedWork W2056016498 @default.
- W3033358104 hasRelatedWork W2136184105 @default.
- W3033358104 hasRelatedWork W2336974148 @default.
- W3033358104 hasRelatedWork W2389470892 @default.
- W3033358104 hasRelatedWork W3013515612 @default.
- W3033358104 hasRelatedWork W4205671340 @default.
- W3033358104 hasRelatedWork W4293087713 @default.
- W3033358104 hasRelatedWork W2187500075 @default.
- W3033358104 hasRelatedWork W2345184372 @default.
- W3033358104 hasVolume "130" @default.
- W3033358104 isParatext "false" @default.
- W3033358104 isRetracted "false" @default.
- W3033358104 magId "3033358104" @default.
- W3033358104 workType "article" @default.