Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033372981> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3033372981 endingPage "492" @default.
- W3033372981 startingPage "480" @default.
- W3033372981 abstract "Route diversion during incidents on freeways has been proven to be a useful tactic to mitigate non-recurrent congestion. However, the capacity constraints created by the signals on the alternative routes put limits on the diversion process since the typical time-of-day (TOD) signal control cannot handle the sudden increase in the traffic on the arterials because of diversion. Thus, there is a need for active transportation management strategies that support agencies in identifying the potential diversion routes for freeway incidents and the need for adjusting the traffic signal timing under different incident and traffic conditions. This paper investigates the use of a data analytic approach based on the long short-term memory (LSTM) deep neural network method to predict the alternative routes dynamically using incident attributes and traffic status on the freeway, and travel time on both the freeway and alternative routes during the incident. Additionally, a methodology is proposed for the development of special signal plans for the critical intersections on the alternative arterials based on the results from the LSTM neural network, combined with simulation modeling, and signal timing optimization. The methodology developed in the paper can be easily implemented by the transportation agencies, as it is based on data that are generally available to the agencies. The results from this paper indicate that the developed methodology can be used as part of a decision support system (DSS) to manage the traffic proactively during the incidents on the freeways." @default.
- W3033372981 created "2020-06-12" @default.
- W3033372981 creator A5012205543 @default.
- W3033372981 creator A5020003511 @default.
- W3033372981 creator A5086645696 @default.
- W3033372981 date "2020-06-01" @default.
- W3033372981 modified "2023-10-09" @default.
- W3033372981 title "Deep Learning Approach for Predictive Analytics to Support Diversion during Freeway Incidents" @default.
- W3033372981 cites W1967704389 @default.
- W3033372981 cites W2004353783 @default.
- W3033372981 cites W2007317905 @default.
- W3033372981 cites W2008483594 @default.
- W3033372981 cites W2022170832 @default.
- W3033372981 cites W2039881222 @default.
- W3033372981 cites W2041567331 @default.
- W3033372981 cites W2051757867 @default.
- W3033372981 cites W2064675550 @default.
- W3033372981 cites W2067158920 @default.
- W3033372981 cites W2079735306 @default.
- W3033372981 cites W2085965286 @default.
- W3033372981 cites W2115090475 @default.
- W3033372981 cites W2122585011 @default.
- W3033372981 cites W2137619888 @default.
- W3033372981 cites W2143612262 @default.
- W3033372981 cites W2481995907 @default.
- W3033372981 cites W2564701384 @default.
- W3033372981 cites W2579495707 @default.
- W3033372981 cites W2775717462 @default.
- W3033372981 cites W2935760944 @default.
- W3033372981 cites W2956452632 @default.
- W3033372981 cites W2991137082 @default.
- W3033372981 cites W950853366 @default.
- W3033372981 doi "https://doi.org/10.1177/0361198120917673" @default.
- W3033372981 hasPublicationYear "2020" @default.
- W3033372981 type Work @default.
- W3033372981 sameAs 3033372981 @default.
- W3033372981 citedByCount "10" @default.
- W3033372981 countsByYear W30333729812020 @default.
- W3033372981 countsByYear W30333729812021 @default.
- W3033372981 countsByYear W30333729812022 @default.
- W3033372981 countsByYear W30333729812023 @default.
- W3033372981 crossrefType "journal-article" @default.
- W3033372981 hasAuthorship W3033372981A5012205543 @default.
- W3033372981 hasAuthorship W3033372981A5020003511 @default.
- W3033372981 hasAuthorship W3033372981A5086645696 @default.
- W3033372981 hasConcept C105795698 @default.
- W3033372981 hasConcept C107327155 @default.
- W3033372981 hasConcept C111919701 @default.
- W3033372981 hasConcept C119857082 @default.
- W3033372981 hasConcept C124101348 @default.
- W3033372981 hasConcept C127413603 @default.
- W3033372981 hasConcept C133462117 @default.
- W3033372981 hasConcept C22212356 @default.
- W3033372981 hasConcept C2779888511 @default.
- W3033372981 hasConcept C2780952636 @default.
- W3033372981 hasConcept C33923547 @default.
- W3033372981 hasConcept C38652104 @default.
- W3033372981 hasConcept C41008148 @default.
- W3033372981 hasConcept C42475967 @default.
- W3033372981 hasConcept C50644808 @default.
- W3033372981 hasConcept C79158427 @default.
- W3033372981 hasConcept C98045186 @default.
- W3033372981 hasConceptScore W3033372981C105795698 @default.
- W3033372981 hasConceptScore W3033372981C107327155 @default.
- W3033372981 hasConceptScore W3033372981C111919701 @default.
- W3033372981 hasConceptScore W3033372981C119857082 @default.
- W3033372981 hasConceptScore W3033372981C124101348 @default.
- W3033372981 hasConceptScore W3033372981C127413603 @default.
- W3033372981 hasConceptScore W3033372981C133462117 @default.
- W3033372981 hasConceptScore W3033372981C22212356 @default.
- W3033372981 hasConceptScore W3033372981C2779888511 @default.
- W3033372981 hasConceptScore W3033372981C2780952636 @default.
- W3033372981 hasConceptScore W3033372981C33923547 @default.
- W3033372981 hasConceptScore W3033372981C38652104 @default.
- W3033372981 hasConceptScore W3033372981C41008148 @default.
- W3033372981 hasConceptScore W3033372981C42475967 @default.
- W3033372981 hasConceptScore W3033372981C50644808 @default.
- W3033372981 hasConceptScore W3033372981C79158427 @default.
- W3033372981 hasConceptScore W3033372981C98045186 @default.
- W3033372981 hasIssue "6" @default.
- W3033372981 hasLocation W30333729811 @default.
- W3033372981 hasOpenAccess W3033372981 @default.
- W3033372981 hasPrimaryLocation W30333729811 @default.
- W3033372981 hasRelatedWork W1229634428 @default.
- W3033372981 hasRelatedWork W1561749061 @default.
- W3033372981 hasRelatedWork W2993480790 @default.
- W3033372981 hasRelatedWork W4366277370 @default.
- W3033372981 hasRelatedWork W588436311 @default.
- W3033372981 hasRelatedWork W589831439 @default.
- W3033372981 hasRelatedWork W614405626 @default.
- W3033372981 hasRelatedWork W621134716 @default.
- W3033372981 hasRelatedWork W625168519 @default.
- W3033372981 hasRelatedWork W758063828 @default.
- W3033372981 hasVolume "2674" @default.
- W3033372981 isParatext "false" @default.
- W3033372981 isRetracted "false" @default.
- W3033372981 magId "3033372981" @default.
- W3033372981 workType "article" @default.