Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033383454> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3033383454 endingPage "98" @default.
- W3033383454 startingPage "79" @default.
- W3033383454 abstract "Worldwide 1.7 billion people suffer from various musculoskeletal conditions and it leads to severe disability and long-term pain. Due to the lack of limited qualified radiologists in various parts of the world, there is a need for an automatic framework that can accurately detect abnormalities in the radiograph images. Deep learning (DL) is very popular due to its capability of extracting useful features automatically with less human intervention, and it is used for solving various research problems in a wide range of fields like biomedical, cybersecurity, autonomous vehicles, etc. The convolutional neural network (CNN) based models are especially used in many biomedical applications because CNN is capable of automatic extraction of the location-invariant features from the input images. In this chapter, we look at the effectiveness of various CNN-based pretrained models for detecting abnormalities in radiographic images and compare their performances using standard statistical measures. We will also analyze the performance of pretrained CNN architectures with respect to radiographic images on different regions of the body and discuss in detail the challenges of the data set. Standard CNN networks such as Xception, Inception v3, VGG-19, DenseNet, and MobileNet models are trained on radiograph images taken from the musculoskeletal radiographs (MURA) data set, which is given as an open challenge by Stanford machine learning (ML) group. It is the large data set of MURA that contains 40,561 images from 14,863 studies (9045 normal and 5818 abnormal studied) which represents various parts of the body such as the elbow, finger, forearm, hand, humerus, shoulder, and wrist. In this chapter, finger, wrist, and shoulder radiographs are considered for binary classification (normal, abnormal) due to the fact that data from these categories are less biased (less data imbalance) when compared to other categories. There are in total 23,241 and 1683 images given as train and valid set in this data set for the three categories considered in the present work. In the experimental analysis, the performance of the models are measured using statistical measures such as accuracy, precision, recall and F1-score." @default.
- W3033383454 created "2020-06-12" @default.
- W3033383454 creator A5000182583 @default.
- W3033383454 creator A5015488830 @default.
- W3033383454 creator A5044521839 @default.
- W3033383454 creator A5052282176 @default.
- W3033383454 creator A5074964521 @default.
- W3033383454 date "2020-01-01" @default.
- W3033383454 modified "2023-10-04" @default.
- W3033383454 title "Musculoskeletal radiographs classification using deep learning" @default.
- W3033383454 cites W2055927112 @default.
- W3033383454 cites W2091967951 @default.
- W3033383454 cites W2113641540 @default.
- W3033383454 cites W2183341477 @default.
- W3033383454 cites W2184387946 @default.
- W3033383454 cites W2253429366 @default.
- W3033383454 cites W2292862470 @default.
- W3033383454 cites W2531409750 @default.
- W3033383454 cites W2624616278 @default.
- W3033383454 cites W2733840449 @default.
- W3033383454 cites W2754210552 @default.
- W3033383454 cites W2773100284 @default.
- W3033383454 cites W2794022343 @default.
- W3033383454 cites W2810819381 @default.
- W3033383454 cites W2896903354 @default.
- W3033383454 cites W2899635607 @default.
- W3033383454 cites W2908790974 @default.
- W3033383454 cites W2940354300 @default.
- W3033383454 cites W2942232960 @default.
- W3033383454 cites W2953040712 @default.
- W3033383454 cites W2963446712 @default.
- W3033383454 cites W2964118901 @default.
- W3033383454 cites W3104324122 @default.
- W3033383454 doi "https://doi.org/10.1016/b978-0-12-819764-6.00006-5" @default.
- W3033383454 hasPublicationYear "2020" @default.
- W3033383454 type Work @default.
- W3033383454 sameAs 3033383454 @default.
- W3033383454 citedByCount "11" @default.
- W3033383454 countsByYear W30333834542020 @default.
- W3033383454 countsByYear W30333834542021 @default.
- W3033383454 countsByYear W30333834542022 @default.
- W3033383454 countsByYear W30333834542023 @default.
- W3033383454 crossrefType "book-chapter" @default.
- W3033383454 hasAuthorship W3033383454A5000182583 @default.
- W3033383454 hasAuthorship W3033383454A5015488830 @default.
- W3033383454 hasAuthorship W3033383454A5044521839 @default.
- W3033383454 hasAuthorship W3033383454A5052282176 @default.
- W3033383454 hasAuthorship W3033383454A5074964521 @default.
- W3033383454 hasConcept C108583219 @default.
- W3033383454 hasConcept C119857082 @default.
- W3033383454 hasConcept C126838900 @default.
- W3033383454 hasConcept C153180895 @default.
- W3033383454 hasConcept C154945302 @default.
- W3033383454 hasConcept C177264268 @default.
- W3033383454 hasConcept C199360897 @default.
- W3033383454 hasConcept C31972630 @default.
- W3033383454 hasConcept C36454342 @default.
- W3033383454 hasConcept C41008148 @default.
- W3033383454 hasConcept C52622490 @default.
- W3033383454 hasConcept C58489278 @default.
- W3033383454 hasConcept C71924100 @default.
- W3033383454 hasConcept C81363708 @default.
- W3033383454 hasConceptScore W3033383454C108583219 @default.
- W3033383454 hasConceptScore W3033383454C119857082 @default.
- W3033383454 hasConceptScore W3033383454C126838900 @default.
- W3033383454 hasConceptScore W3033383454C153180895 @default.
- W3033383454 hasConceptScore W3033383454C154945302 @default.
- W3033383454 hasConceptScore W3033383454C177264268 @default.
- W3033383454 hasConceptScore W3033383454C199360897 @default.
- W3033383454 hasConceptScore W3033383454C31972630 @default.
- W3033383454 hasConceptScore W3033383454C36454342 @default.
- W3033383454 hasConceptScore W3033383454C41008148 @default.
- W3033383454 hasConceptScore W3033383454C52622490 @default.
- W3033383454 hasConceptScore W3033383454C58489278 @default.
- W3033383454 hasConceptScore W3033383454C71924100 @default.
- W3033383454 hasConceptScore W3033383454C81363708 @default.
- W3033383454 hasLocation W30333834541 @default.
- W3033383454 hasOpenAccess W3033383454 @default.
- W3033383454 hasPrimaryLocation W30333834541 @default.
- W3033383454 hasRelatedWork W2279398222 @default.
- W3033383454 hasRelatedWork W2731899572 @default.
- W3033383454 hasRelatedWork W3116150086 @default.
- W3033383454 hasRelatedWork W3133861977 @default.
- W3033383454 hasRelatedWork W3156786002 @default.
- W3033383454 hasRelatedWork W4200173597 @default.
- W3033383454 hasRelatedWork W4299822940 @default.
- W3033383454 hasRelatedWork W4312417841 @default.
- W3033383454 hasRelatedWork W4321369474 @default.
- W3033383454 hasRelatedWork W4366492315 @default.
- W3033383454 isParatext "false" @default.
- W3033383454 isRetracted "false" @default.
- W3033383454 magId "3033383454" @default.
- W3033383454 workType "book-chapter" @default.