Matches in SemOpenAlex for { <https://semopenalex.org/work/W3033425906> ?p ?o ?g. }
- W3033425906 abstract "Abstract Background Substantial limitations have been imposed on passenger air travel to reduce transmission of severe acute respiratory syndrome coronavirus 2 between regions and countries. However, as case numbers decrease, air travel will gradually resume. We considered a future scenario in which case numbers are low and air travel returns to normal. Under that scenario, there will be a risk of outbreaks in locations worldwide due to imported cases. We estimated the risk of different locations acting as sources of future coronavirus disease 2019 outbreaks elsewhere. Methods We use modelled global air travel data and population density estimates from locations worldwide to analyse the risk that 1364 airports are sources of future coronavirus disease 2019 outbreaks. We use a probabilistic, branching-process-based approach that considers the volume of air travelers between airports and the reproduction number at each location, accounting for local population density. Results Under the scenario we model, we identify airports in East Asia as having the highest risk of acting as sources of future outbreaks. Moreover, we investigate the locations most likely to cause outbreaks due to air travel in regions that are large and potentially vulnerable to outbreaks: India, Brazil and Africa. We find that outbreaks in India and Brazil are most likely to be seeded by individuals travelling from within those regions. We find that this is also true for less vulnerable regions, such as the United States, Europe and China. However, outbreaks in Africa due to imported cases are instead most likely to be initiated by passengers travelling from outside the continent. Conclusions Variation in flight volumes and destination population densities creates a non-uniform distribution of the risk that different airports pose of acting as the source of an outbreak. Accurate quantification of the spatial distribution of outbreak risk can therefore facilitate optimal allocation of resources for effective targeting of public health interventions." @default.
- W3033425906 created "2020-06-12" @default.
- W3033425906 creator A5004524783 @default.
- W3033425906 creator A5028977138 @default.
- W3033425906 creator A5054898185 @default.
- W3033425906 date "2020-06-05" @default.
- W3033425906 modified "2023-10-18" @default.
- W3033425906 title "Estimating COVID-19 outbreak risk through air travel" @default.
- W3033425906 cites W1977405989 @default.
- W3033425906 cites W1989588517 @default.
- W3033425906 cites W2005627719 @default.
- W3033425906 cites W2027443119 @default.
- W3033425906 cites W2028416373 @default.
- W3033425906 cites W2143819964 @default.
- W3033425906 cites W2166313677 @default.
- W3033425906 cites W2168907148 @default.
- W3033425906 cites W2180770390 @default.
- W3033425906 cites W2730954423 @default.
- W3033425906 cites W2785293049 @default.
- W3033425906 cites W2940485200 @default.
- W3033425906 cites W2943496044 @default.
- W3033425906 cites W2944609461 @default.
- W3033425906 cites W2967901999 @default.
- W3033425906 cites W2977162788 @default.
- W3033425906 cites W3001118548 @default.
- W3033425906 cites W3004047749 @default.
- W3033425906 cites W3006121899 @default.
- W3033425906 cites W3006211350 @default.
- W3033425906 cites W3006642361 @default.
- W3033425906 cites W3006834170 @default.
- W3033425906 cites W3008842543 @default.
- W3033425906 cites W3009741597 @default.
- W3033425906 cites W3010131837 @default.
- W3033425906 cites W3010223921 @default.
- W3033425906 cites W3011048843 @default.
- W3033425906 cites W3011152844 @default.
- W3033425906 cites W3011662277 @default.
- W3033425906 cites W3012284084 @default.
- W3033425906 cites W3012891063 @default.
- W3033425906 cites W3013215798 @default.
- W3033425906 cites W3015988827 @default.
- W3033425906 cites W3021173795 @default.
- W3033425906 cites W3021823577 @default.
- W3033425906 doi "https://doi.org/10.1093/jtm/taaa093" @default.
- W3033425906 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7313812" @default.
- W3033425906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32502274" @default.
- W3033425906 hasPublicationYear "2020" @default.
- W3033425906 type Work @default.
- W3033425906 sameAs 3033425906 @default.
- W3033425906 citedByCount "58" @default.
- W3033425906 countsByYear W30334259062020 @default.
- W3033425906 countsByYear W30334259062021 @default.
- W3033425906 countsByYear W30334259062022 @default.
- W3033425906 countsByYear W30334259062023 @default.
- W3033425906 crossrefType "journal-article" @default.
- W3033425906 hasAuthorship W3033425906A5004524783 @default.
- W3033425906 hasAuthorship W3033425906A5028977138 @default.
- W3033425906 hasAuthorship W3033425906A5054898185 @default.
- W3033425906 hasBestOaLocation W30334259061 @default.
- W3033425906 hasConcept C116675565 @default.
- W3033425906 hasConcept C127413603 @default.
- W3033425906 hasConcept C142724271 @default.
- W3033425906 hasConcept C144024400 @default.
- W3033425906 hasConcept C146978453 @default.
- W3033425906 hasConcept C159047783 @default.
- W3033425906 hasConcept C205649164 @default.
- W3033425906 hasConcept C2776525042 @default.
- W3033425906 hasConcept C2779134260 @default.
- W3033425906 hasConcept C2908647359 @default.
- W3033425906 hasConcept C2985550459 @default.
- W3033425906 hasConcept C3008058167 @default.
- W3033425906 hasConcept C45355965 @default.
- W3033425906 hasConcept C524204448 @default.
- W3033425906 hasConcept C71924100 @default.
- W3033425906 hasConcept C74448152 @default.
- W3033425906 hasConcept C99454951 @default.
- W3033425906 hasConceptScore W3033425906C116675565 @default.
- W3033425906 hasConceptScore W3033425906C127413603 @default.
- W3033425906 hasConceptScore W3033425906C142724271 @default.
- W3033425906 hasConceptScore W3033425906C144024400 @default.
- W3033425906 hasConceptScore W3033425906C146978453 @default.
- W3033425906 hasConceptScore W3033425906C159047783 @default.
- W3033425906 hasConceptScore W3033425906C205649164 @default.
- W3033425906 hasConceptScore W3033425906C2776525042 @default.
- W3033425906 hasConceptScore W3033425906C2779134260 @default.
- W3033425906 hasConceptScore W3033425906C2908647359 @default.
- W3033425906 hasConceptScore W3033425906C2985550459 @default.
- W3033425906 hasConceptScore W3033425906C3008058167 @default.
- W3033425906 hasConceptScore W3033425906C45355965 @default.
- W3033425906 hasConceptScore W3033425906C524204448 @default.
- W3033425906 hasConceptScore W3033425906C71924100 @default.
- W3033425906 hasConceptScore W3033425906C74448152 @default.
- W3033425906 hasConceptScore W3033425906C99454951 @default.
- W3033425906 hasIssue "5" @default.
- W3033425906 hasLocation W30334259061 @default.
- W3033425906 hasLocation W30334259062 @default.
- W3033425906 hasLocation W30334259063 @default.
- W3033425906 hasLocation W30334259064 @default.
- W3033425906 hasLocation W30334259065 @default.
- W3033425906 hasOpenAccess W3033425906 @default.